Segmentation of the Aorta. Towards the Automatic Segmentation, Modeling, and Meshing of the Aortic Vessel Tree from Multicenter Acquisition
Springer International Publishing (Verlag)
978-3-031-53240-5 (ISBN)
The 8 full and 3 short papers presented have been carefully reviewed and selected for inclusion in the book. They focus specifically on robustness, visual quality and meshing of automatically generated segmentations of aortic vessel trees from CT imaging. The challenge was organized as a "container submission" challenge, where participants had to upload their algorithms to Grand Challenge in the form of Docker containers. Three tasks were created for SEG.A. 2023.
M3F: Multi-Field-of-View Feature Fusion Network for Aortic Vessel Tree Segmentation in CT Angiography.- Aorta Segmentation from 3D CT in MICCAI SEG.A. 2023 Challenge.- A Data-Centric Approach for Segmenting the Aortic Vessel Tree: A Solution to SEG.A. Challenge 2023 Segmentation Task.- Automatic Aorta Segmentation with Heavily Augmented, High-Resolution 3-D ResUNet: Contribution to the SEG.A Challenge.- Position-encoded pixel-to-prototype contrastive learning for aortic vessel tree segmentation.- Misclassification Loss for Segmentation of the Aortic Vessel Tree.- Deep Learning-based segmentation and mesh reconstruction of the Aortic Vessel Tree from CTA images.- RASNet: U-Net-based Robust Aortic Segmentation Network For Multicenter Datasets.- Optimizing Aortic Segmentation with an Innovative Quality Assessment: The Role of Global Sensitivity Analysis.- A mini tutorial on mesh generation of blood vessels for CFD applications.
Erscheinungsdatum | 10.02.2024 |
---|---|
Reihe/Serie | Lecture Notes in Computer Science |
Zusatzinfo | XII, 142 p. 74 illus., 67 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 248 g |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Schlagworte | Artificial Intelligence • CTA • meshing aorta • multicenter • Segmentation • Sensitivity Analysis • shape modelling • Visualization |
ISBN-10 | 3-031-53240-6 / 3031532406 |
ISBN-13 | 978-3-031-53240-5 / 9783031532405 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich