Applications of Deep Machine Learning in Future Energy Systems
Elsevier - Health Sciences Division (Verlag)
978-0-443-21432-5 (ISBN)
Dr. Mohammad-Hassan Khooban is an Assistant Professor in the Department of Engineering and the Director of the Power Circuits and Systems Research Group at Aarhus University in Denmark. He has authored or co-authored more than 220 publications in peer-reviewed journals (mostly IEEE) and international conferences, written three book chapters, and holds one patent. He has been involved in six national and international projects. He was identified in 2019, 2020, and 2021 by Stanford University as one of the world’s top 2% researchers in engineering. He was also ranked 16th in the list of top 30 Electronics and Electrical Engineering Scientists in Denmark in 2022. His research interests include the application of advanced control, and optimization of artificial intelligence-inspired techniques in power electronics and systems.
1. Introduction
2. Artificial intelligence and Machine learning in Future Energy Systems (State-of-Art, future development)
Jalal Heidary
3. Digital Twins-Assisted Design of Next-Generation DC Microgrid
Meysam Gheisarnejad, Maryam Homayounzadeh, Burak Yildirim
4. Deep Learning-Based Procedure for Profit Maximization of EV Charging Stations
Mohammad Hassan Khooban, Peyman Razmi, MASOUMEH SEYEDYAZDI
5. Deep Frequency Control of Power Grids Under Cyber Attacks
Mohammad Aghamohammadi, jalal heidary, Soroush Oshnoei
6. Application of Q-Learning in Stabilization of Multi Carrier Energy Systems
Meysam Gheisarnejad, Maryam Homayounzadeh, Burak Yildirim
7. Design of Next-Generation of 5G Data Center Power Supply based on AI
Mohammad Hassan Khooban, Meysam Gheisarnejad
8. Smart EV Battery Charger Based on Deep Machine Learning
Mohammad Hassan Khooban, Jalil Boudjadar, Mehdi Rafiei
9. Machine learning in Talkative Power
Mohammad Hassan Khooban, Ali Mousavi
10. Advanced Control of Power Electronics-based Machine Learning
Maryam Homayounzadeh, Meysam Gheisarnejad, Mohamadreza Homayounzade, Mohammad Hassan Khooban
11. Multi-Level Energy Management and Optimal Control System in Smart Cities Based on Deep Machine Learning
Javid Ghafourian, Atefe Hedayatnia, Ahmed Al-Durra, Reza Sepehrzad
Erscheinungsdatum | 03.09.2024 |
---|---|
Verlagsort | Philadelphia |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 450 g |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Technik ► Elektrotechnik / Energietechnik | |
ISBN-10 | 0-443-21432-8 / 0443214328 |
ISBN-13 | 978-0-443-21432-5 / 9780443214325 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich