Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Towards Optimal Point Cloud Processing for 3D Reconstruction (eBook)

eBook Download: PDF
2022 | 1st ed. 2022
XIX, 87 Seiten
Springer International Publishing (Verlag)
978-3-030-96110-7 (ISBN)

Lese- und Medienproben

Towards Optimal Point Cloud Processing for 3D Reconstruction - Guoxiang Zhang, Yangquan Chen
Systemvoraussetzungen
58,84 inkl. MwSt
(CHF 57,45)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This SpringerBrief presents novel methods of approaching challenging problems in the reconstruction of accurate 3D models and serves as an introduction for further 3D reconstruction methods. It develops a 3D reconstruction system that produces accurate results by cascading multiple novel loop detection, sifting, and optimization methods.

The authors offer a fast point cloud registration method that utilizes optimized randomness in random sample consensus for surface loop detection. The text also proposes two methods  for surface-loop sifting. One is supported by a sparse-feature-based optimization graph. This graph is more robust to different scan patterns than earlier methods and can cope with tracking failure and recovery. The other is an offline algorithm that can sift loop detections based on their impact on loop optimization results and which is enabled by a dense map posterior metric for 3D reconstruction and mapping performance evaluation works without any costly ground-truth data.

The methods presented in Towards Optimal Point Cloud Processing for 3D Reconstruction will be of assistance to researchers developing 3D modelling methods and to workers in the wide variety of fields that exploit such technology including metrology, geological animation and mass customization in smart manufacturing.




Dr. Guoxiang Zhang completed his Ph.D. program at University of California Merced in Spring 2021. His research interests are in 3D point cloud processing, semantic mapping with applications in cave exploration drones and autonomous driving systems. The loop-detection method he invented has the top performance on several real world datasets. His work on more informed RANSAC won the best presentation award from the 2020 ICCMA conference. His foundational code contributions in Julia for 3D reconstruction application are being widely used.

Dr. YangQuan Chen is now a full professor at the School of Engineering, University of California, Merced. He was on faculty of Electrical and Computer Engineering Dept. of Utah State University, Logan, Utah from 2000 to 2012 where he was a tenured associate professor and the Director for the Center for Self-Organizing and Intelligent Systems (CSOIS) from 2004-2012. Dr. Chen published many books, papers and patents. He served as the General Co-Chair for ICUAS 2014 and 2017, 2019 (International Conference on Unmanned Aircraft Systems), and was on the editorial board for journals like IEEE Transaction on Control Systems Technology, ISA Transactions, IFAC journals of Control Engineering Practice, ASME Journal of Dynamics Systems, Measurement and Control. He serves as associate editor for IFAC Mechatronics, Fractional Calculus and Applied Analysis, and Nonlinear Dynamics, as well as again ASME Journal of Dynamics Systems, Measurement and Control.  He is now serving as the Topical Editor-in-Chief (Field Robotics) on International Journal of Advanced Robotics Systems (IJARS) and Intelligent Service Robotics. His Publon H-index is 63 with more than 17.1k citations, GoogleScholar citation is 39.7k with H-index 88, H10-index 512. Prof. Chen was selected  in the 2018, 2019, 2020 Highly Cited Researchers List by Clarivate.
Erscheint lt. Verlag 3.6.2022
Reihe/Serie SpringerBriefs in Electrical and Computer Engineering
SpringerBriefs in Electrical and Computer Engineering
SpringerBriefs in Signal Processing
SpringerBriefs in Signal Processing
Zusatzinfo XIX, 87 p. 29 illus., 25 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
Schlagworte 3-D Mapping • 3-D Reconstruction • Cave Mapping • Image Processing • Point Cloud Processing • semantic mapping
ISBN-10 3-030-96110-9 / 3030961109
ISBN-13 978-3-030-96110-7 / 9783030961107
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 16,95