Rank-Based Methods for Shrinkage and Selection (eBook)
480 Seiten
John Wiley & Sons (Verlag)
978-1-119-62541-4 (ISBN)
A practical and hands-on guide to the theory and methodology of statistical estimation based on rank
Robust statistics is an important field in contemporary mathematics and applied statistical methods. Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning describes techniques to produce higher quality data analysis in shrinkage and subset selection to obtain parsimonious models with outlier-free prediction. This book is intended for statisticians, economists, biostatisticians, data scientists and graduate students.
Rank-Based Methods for Shrinkage and Selection elaborates on rank-based theory and application in machine learning to robustify the least squares methodology. It also includes:
* Development of rank theory and application of shrinkage and selection
* Methodology for robust data science using penalized rank estimators
* Theory and methods of penalized rank dispersion for ridge, LASSO and Enet
* Topics include Liu regression, high-dimension, and AR(p)
* Novel rank-based logistic regression and neural networks
* Problem sets include R code to demonstrate its use in machine learning
A. K. Md. Ehsanes Saleh, PhD, is a Professor Emeritus and Distinguished Professor in the School of Mathematics and Statistics, Carleton University, Ottawa, Canada. He is Fellow of IMS, ASA and Honorary member of SSC, Canada. Mohammad Arashi, PhD, is an Associate Professor at Ferdowsi University of Mashhad in Iran and Extraordinary Professor and C2 rated researcher at University of Pretoria, Pretoria, South Africa. He is an elected member of ISI. Resve A. Saleh, M.Sc, PhD (Berkeley), is a Professor Emeritus in the Department of ECE at the University of British Columbia, Vancouver, Canada, and formerly with University of Illinois and Stanford University. He is the author of 4 books and Fellow of the IEEE. Mina Norouzirad, PhD, is a post-doctoral researcher at the Center for Mathematics and Applications (CMA) of Nova University of Lisbon, Portugal.
Erscheint lt. Verlag | 4.3.2022 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | Angewandte Wahrscheinlichkeitsrechnung u. Statistik • Applied Probability & Statistics • Econometric & Statistical Methods • Ökonometrie • Ökonometrie u. statistische Methoden • Regression Analysis • Regressionsanalyse • Statistics • Statistik |
ISBN-10 | 1-119-62541-6 / 1119625416 |
ISBN-13 | 978-1-119-62541-4 / 9781119625414 |
Haben Sie eine Frage zum Produkt? |
Größe: 26,9 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich