Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Non-Gaussian Autoregressive-Type Time Series - N. Balakrishna

Non-Gaussian Autoregressive-Type Time Series (eBook)

(Autor)

eBook Download: PDF
2022 | 1st ed. 2021
XVIII, 225 Seiten
Springer Singapore (Verlag)
978-981-16-8162-2 (ISBN)
Systemvoraussetzungen
117,69 inkl. MwSt
(CHF 114,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book brings together a variety of non-Gaussian autoregressive-type models to analyze time-series data. This book collects and collates most of the available models in the field and provide their probabilistic and inferential properties. This book classifies the stationary time-series models into different groups such as linear stationary models with non-Gaussian innovations, linear stationary models with non-Gaussian marginal distributions, product autoregressive models and minification models. Even though several non-Gaussian time-series models are available in the literature, most of them are focusing on the model structure and the probabilistic properties.



N. BALAKRISHNA is a senior professor at the Department of Statistics and the director of International Relations at the Cochin University of Science and Technology (CUSAT), Cochin, Kerala. He joined CUSAT as a lecturer, in April 1992, after obtaining his M.Phil. and Ph.D. degrees in Statistics from the University of Pune, Maharashtra, India. He is an associate editor of several journals: Communications in Statistics: Theory and MethodsSimulation & Computation, and Journal of Indian Society for Probability and Statistics. He is also one of the editors-in-chief of the Journal of Indian Statistical Association. He is an elected member of the International Statistical Institute since 2005. Presently, he is the president of the Indian Society for Probability and Statistics (ISPS).

As researcher in time-series analysis, Prof. Balakrishna received the UK-India Education and Research Initiative Fellowship, in 2007, to continue the research collaboration at University of Warwick. Earlier, he also received the Commonwealth Post-Doctoral Fellowship in 1999-2000 to do research at the University of Birmingham, UK. He was awarded the Distinguished Statistician Award by the Indian Society for Probability and Statistics, in 2018. Professor Balakrishna has published 55 research papers in refereed journals and successfully guided 10 scholars for their Ph.D. degree. Professor Balakrishna has visited several universities of the world: the University of Waterloo, Canada, to continue his ongoing research collaboration in time series; a visiting scientist at Technical University Dresden, Germany, during 2003-2004; and a visiting professor at Michigan State University, USA, during 2015-2016. He has attended several national and international conferences in India as well as abroad. 


This book brings together a variety of non-Gaussian autoregressive-type models to analyze time-series data. This book collects and collates most of the available models in the field and provide their probabilistic and inferential properties. This book classifies the stationary time-series models into different groups such as linear stationary models with non-Gaussian innovations, linear stationary models with non-Gaussian marginal distributions, product autoregressive models and minification models. Even though several non-Gaussian time-series models are available in the literature, most of them are focusing on the model structure and the probabilistic properties.
Erscheint lt. Verlag 27.1.2022
Zusatzinfo XVIII, 225 p.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte autoregression • autoregressive models with non Gaussian innovations • autoregressive models with stable innovations • Cauchy autoregressive models • estimating function methods • exponential autoregressive models • Gamma autoregressive models • laplace autoregressive models • logistic autoregressive models • maximum probability estimators • minification models • mixture autoregressive models • Non Gaussian time series • product autoregressive models • quasi likelihood methods • time series models with slowly varying innovations
ISBN-10 981-16-8162-7 / 9811681627
ISBN-13 978-981-16-8162-2 / 9789811681622
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich