Cohomology of Finite Groups
Springer Berlin (Verlag)
978-3-540-20283-7 (ISBN)
I. Group Extensions, Simple Algebras and Cohomology.- II. Classifying Spaces and Group Cohomology.- III. Invariants and Cohomology of Groups.- IV. Spectral Sequences and Detection Theorems.- V. G-Complexes and Equivariant Cohomology.- VI. The Cohomology of the Symmetric Groups.- VII. Finite Groups of Lie Type.- VIII. Cohomology of Sporadic Simple Groups.- IX. The Plus Construction and Applications.- X. The Schur Subgroup of the Brauer Group.- References.
From the reviews of the second edition:
"This book is very different from other treatments since it emphasizes the computational aspects of the cohomology of finite groups with coefficients in a field. ... I say merely that each mathematician interested in algebra and topology should have a copy of this book on their shelf and make sure that their librarian gets one as well. Overall I thoroughly recommend this book and believe that it will be a useful book for introducing students to cohomological methods for groups." (Manuel Ladra Gonzalez, Zentralblatt MATH, Vol. 1061 (12), 2005)
Erscheint lt. Verlag | 2.12.2003 |
---|---|
Reihe/Serie | Grundlehren der mathematischen Wissenschaften |
Zusatzinfo | VIII, 324 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 625 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Schlagworte | Algebra • Algebraic K-Theory • algebraic topology • classifying spaces • cohomology • cohomology of groups • Endliche Gruppe (Mathematik) • Group actions • Homological algebra • Homology • homotopy theory • Kohomologie • K-theory |
ISBN-10 | 3-540-20283-8 / 3540202838 |
ISBN-13 | 978-3-540-20283-7 / 9783540202837 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich