Machine Learning for Intelligent Multimedia Analytics (eBook)
XIV, 335 Seiten
Springer Singapore (Verlag)
978-981-15-9492-2 (ISBN)
This book presents applications of machine learning techniques in processing multimedia large-scale data. Multimedia such as text, image, audio, video, and graphics stands as one of the most demanding and exciting aspects of the information era. The book discusses new challenges faced by researchers in dealing with these large-scale data and also presents innovative solutions to address several potential research problems, e.g., enabling comprehensive visual classification to fill the semantic gap by exploring large-scale data, offering a promising frontier for detailed multimedia understanding, as well as extract patterns and making effective decisions by analyzing the large collection of data.
Dr. Pardeep Kumar is currently working as an Associate Professor in the Department of Computer Science & Engineering and Information Technology at Jaypee University of Information Technology (JUIT), Wakanaghat, Solan, Himachal Pradesh, India. He has been associated with his current employer since 2008. Prior to joining Jaypee Group, he was associated with Mody University of Technology & Science (Formerly known as Mody Institute of Technology & Science) Laxmangarh, Sikar, Rajasthan. He has completed PhD (Computer Science and Engineering) from Uttarakhand Technical University, Dehradun, India, M.Tech (Computer Science & Engineering) from Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India and B.Tech (Information Technology) from Kurukshetra University, Kurukshetra, Haryana, India. He has served as Executive General Chair of 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), Guest Editor of Special Issue on 'Robust and Secure Data Hiding Techniques for Telemedicine Applications', Multimedia Tools and Applications: An International Journal, Springer (SCI Indexed Journal, IF= 1.346), Lead Guest Editor of Special Issue on 'Recent Developments in Parallel, Distributed and Grid Computing for Big Data', published in the International Journal of Grid and Utility Computing, Inderscience (Scopus Indexed), and Guest Editor of Special Issue on 'Advanced Techniques in Multimedia Watermarking', published in the International Journal of Information and Computer Security, Inderscience (Scopus Indexed). Dr. Kumar has been appointed as an Associate Editor of IEEE Access (SCI Indexed, IF = 3.5) Journal. His area of interests includes machine learning, medical image mining, image processing, health care informatics, etc.
Dr. Amit Kumar Singh is currently an Assistant Professor with the Computer Science and Engineering Department, National Institute of Technology Patna, Bihar, India. He received his PhD from National Institute of Technology Kurukshetra, Haryana, India in 2015. He has authored over 100 peer-reviewed journals, conference publications, and book chapters. He has authored three books and edited four books with internationally recognized publishers such Springer and Elsevier. He is the associate editor of IEEE Access (Since 2016), IET Image Processing (Since 2020), and former member of the editorial board of Multimedia Tools and Applications, Springer (2015-2019). He has edited various international journal special issues as a lead guest editor such as such as ACM Transactions on Multimedia Computing, Communications, and Applications, ACM Transactions on Internet Technology, IEEE Consumer Electronics Magazine, IEEE Access, Multimedia Tools and Applications, Springer, International Journal of Information Management, Elsevier, Journal of Ambient Intelligence and Humanized Computing, Springer. He has obtained the memberships from several international academic organizations such as ACM and IEEE. His research interests include multimedia data hiding, image processing, biometrics, & Cryptography.
This book presents applications of machine learning techniques in processing multimedia large-scale data. Multimedia such as text, image, audio, video, and graphics stands as one of the most demanding and exciting aspects of the information era. The book discusses new challenges faced by researchers in dealing with these large-scale data and also presents innovative solutions to address several potential research problems, e.g., enabling comprehensive visual classification to fill the semantic gap by exploring large-scale data, offering a promising frontier for detailed multimedia understanding, as well as extract patterns and making effective decisions by analyzing the large collection of data.
Erscheint lt. Verlag | 16.1.2021 |
---|---|
Reihe/Serie | Studies in Big Data | Studies in Big Data |
Zusatzinfo | XIV, 335 p. 137 illus., 96 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Grafik / Design |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Technik | |
Schlagworte | Big Data • digital forensics • Healthcare • IOT • machine intelligence • Multimedia Analytics • Security and Privacy • urban computing |
ISBN-10 | 981-15-9492-9 / 9811594929 |
ISBN-13 | 978-981-15-9492-2 / 9789811594922 |
Haben Sie eine Frage zum Produkt? |
Größe: 13,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich