Machine Learning Systems for Multimodal Affect Recognition
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-28673-6 (ISBN)
Markus Kächele offers a detailed view on the different steps in the affective computing pipeline, ranging from corpus design and recording over annotation and feature extraction to post-processing, classification of individual modalities and fusion in the context of ensemble classifiers. He focuses on multimodal recognition of discrete and continuous emotional and medical states. As such, specifically the peculiarities that arise during annotation and processing of continuous signals are highlighted. Furthermore, methods are presented that allow personalization of datasets and adaptation of classifiers to new situations and persons.
Dr. Markus Kächele is managing partner of Ikara Vision Systems, a spin-off of the German Research Center for Artificial Intelligence (DFKI). He focuses on bridging the gap between research and industrial applications in the fields of deep learning and computer vision.
Classification and Regression Approaches.- Applications and Affective Corpora.- Modalities and Feature Extraction.- Machine Learning for the Estimation of Affective Dimensions.- Adaptation and Personalization of Classifiers.- Experimental Validation.
Erscheinungsdatum | 05.12.2019 |
---|---|
Zusatzinfo | XIX, 188 p. 1 illus. |
Verlagsort | Wiesbaden |
Sprache | englisch |
Maße | 148 x 210 mm |
Gewicht | 278 g |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Informatik ► Software Entwicklung ► User Interfaces (HCI) | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Affective computing • Continuous Emotion Recognition • Human-Computer interaction • Human–Computer Interaction • machine learning • Multimodal Affect Recognition • Neural networks • Pain Intensity Estimation |
ISBN-10 | 3-658-28673-3 / 3658286733 |
ISBN-13 | 978-3-658-28673-6 / 9783658286736 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich