Clinical Prediction Models (eBook)
XXXIII, 558 Seiten
Springer International Publishing (Verlag)
978-3-030-16399-0 (ISBN)
The second edition of this volume provides insight and practical illustrations on how modern statistical concepts and regression methods can be applied in medical prediction problems, including diagnostic and prognostic outcomes. Many advances have been made in statistical approaches towards outcome prediction, but a sensible strategy is needed for model development, validation, and updating, such that prediction models can better support medical practice.
There is an increasing need for personalized evidence-based medicine that uses an individualized approach to medical decision-making. In this Big Data era, there is expanded access to large volumes of routinely collected data and an increased number of applications for prediction models, such as targeted early detection of disease and individualized approaches to diagnostic testing and treatment. Clinical Prediction Models presents a practical checklist that needs to be considered for development of a valid prediction model. Steps include preliminary considerations such as dealing with missing values; coding of predictors; selection of main effects and interactions for a multivariable model; estimation of model parameters with shrinkage methods and incorporation of external data; evaluation of performance and usefulness; internal validation; and presentation formatting. The text also addresses common issues that make prediction models suboptimal, such as small sample sizes, exaggerated claims, and poor generalizability.
The text is primarily intended for clinical epidemiologists and biostatisticians. Including many case studies and publicly available R code and data sets, the book is also appropriate as a textbook for a graduate course on predictive modeling in diagnosis and prognosis. While practical in nature, the book also provides a philosophical perspective on data analysis in medicine that goes beyond predictive modeling.
Updates to this new and expanded edition include:
•A discussion of Big Data and its implications for the design of prediction models
•Machine learning issues
•More simulations with missing 'y' values
•Extended discussion on between-cohort heterogeneity
•Description of ShinyApp
•Updated LASSO illustration
•New case studies
Ewout Steyerberg worked for 25 years at Erasmus Medical Center in Rotterdam before moving to Leiden where he is now Professor of Clinical Biostatistics and Medical Decision Making and chair of the Department of Biomedical Data Sciences at Leiden University Medical Center. His research has covered a broad range of methodological and medical topics, which is reflected in hundreds of peer-reviewed methodological and applied publications. His methodological expertise is in the design and analysis of randomized controlled trials, cost-effectiveness analysis, and decision analysis. His methodological research focuses on the development, validation and updating of prediction models, as reflected in a textbook (Springer, 2009). His medical fields of application include oncology, cardiovascular disease, internal medicine, pediatrics, infectious diseases, neurology, surgery and traumatic brain injury.
Erscheint lt. Verlag | 22.7.2019 |
---|---|
Reihe/Serie | Statistics for Biology and Health | Statistics for Biology and Health |
Zusatzinfo | XXXIII, 558 p. 226 illus., 161 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Medizin / Pharmazie ► Allgemeines / Lexika | |
Medizin / Pharmazie ► Medizinische Fachgebiete ► Innere Medizin | |
Schlagworte | Anästhesie-Informations-Management-System • bias assesment • Coding • Data-analysis • Data Analysis • Diagnosis • Evidence-based Medicine • linear regression • Prediction • Prediction models • Radiologieinformationssystem • Regression modeling • Validation |
ISBN-10 | 3-030-16399-7 / 3030163997 |
ISBN-13 | 978-3-030-16399-0 / 9783030163990 |
Haben Sie eine Frage zum Produkt? |
Größe: 18,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich