Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Supervised Descriptive Pattern Mining - Sebastián Ventura, José María Luna

Supervised Descriptive Pattern Mining

Buch | Softcover
XI, 185 Seiten
2019 | 1. Softcover reprint of the original 1st ed. 2018
Springer International Publishing (Verlag)
978-3-030-07456-2 (ISBN)
CHF 164,75 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book provides a general and comprehensible overview of supervised descriptive pattern mining, considering classic algorithms and those based on heuristics.  It provides some formal definitions and a general idea about patterns, pattern mining, the usefulness of patterns in the knowledge discovery process, as well as a brief summary on the tasks related to supervised descriptive pattern mining. It also includes a detailed description on the tasks usually grouped under the term supervised descriptive pattern mining: subgroups discovery, contrast sets and emerging patterns. Additionally, this book includes two tasks, class association rules and exceptional models, that are also considered within this field.

A major feature of this book is that it provides a general overview (formal definitions and algorithms) of all the tasks included under the term supervised descriptive pattern mining. It considers the analysis of different algorithms either based on heuristics or based on exhaustive search methodologies for any of these tasks. This book also illustrates how important these techniques are in different fields, a set of real-world applications are described.

Last but not least, some related tasks are also considered and analyzed. The final aim of this book is to provide a general review of the supervised descriptive pattern mining field, describing its tasks, its algorithms, its applications, and related tasks (those that share some common features).

This book  targets developers, engineers and computer scientists aiming to apply classic and heuristic-based algorithms to solve different kinds of pattern mining problems and apply them to real issues. Students and researchers working in this field, can use this comprehensive book (which includes its methods and tools) as a secondary textbook.

1 Introduction to Supervised Descriptive Pattern Mining.- 2 Contrast Sets.- 3 Emerging Patterns.- 4 Subgroup Discovery.- 5 Class Association Rules.- 6 Exceptional Models.- 7 Other Forms of Supervised Descriptive Pattern Mining.- 8 Successful Applications.

Erscheinungsdatum
Zusatzinfo XI, 185 p. 42 illus.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 314 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Association Rule Mining • Contrast Sets • Emerging Patterns • evolutionary algorithms • Exceptional Models • frequent pattern mining • Infrequent Pattern Mining • pattern mining • Pattern Mining applications • Pattern mining quality measures • Subgroup discovery • Supervised Descriptive Rule Discovery
ISBN-10 3-030-07456-0 / 3030074560
ISBN-13 978-3-030-07456-2 / 9783030074562
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85