Basic Set Theory (eBook)
416 Seiten
Dover Publications (Verlag)
978-0-486-15073-4 (ISBN)
Although this book deals with basic set theory (in general, it stops short of areas where model-theoretic methods are used) on a rather advanced level, it does it at an unhurried pace. This enables the author to pay close attention to interesting and important aspects of the topic that might otherwise be skipped over. Written for upper-level undergraduate and graduate students, the book is divided into two parts. The first covers pure set theory, including the basic notions, order and well-foundedness, cardinal numbers, the ordinals, and the axiom of choice and some of its consequences. The second part deals with applications and advanced topics, among them a review of point set topology, the real spaces, Boolean algebras, and infinite combinatorics and large cardinals. A helpful appendix deals with eliminability and conservation theorems, while numerous exercises supply additional information on the subject matter and help students test their grasp of the material. 1979 edition. 20 figures.
Part A. Pure Set Theory Chapter I. The Basic Notions 1. The Basic Language of Set Theory 2. The Axioms of Extensionality and Comprehension 3. Classes, Why and How 4. Classes, the formal Introduction 5. The Axioms of Set Theory 6. Relations and functions Chapter II. Order and Well-Foundedness 1. Order 2. Well-Order 3. Ordinals 4. Natural Numbers and finite Sequences 5. Well-Founded Relations 6. Well-Founded Sets 7. The Axiom of Foundation Chapter III. Cardinal Numbers 1. Finite Sets 2. The Partial Order of the Cardinals 3. The Finite Arithmetic of the Cardinals 4. The Infinite Arithmetic of the Well Orderd Cardinals Chapter IV. The Ordinals 1. Ordinal Addition and Multiplication 2. Ordinal Exponentiation 3. Cofinality and Regular Ordinals 4. Closed Unbounded Classes and Stationery Classes Chapter V. The Axiom of Choice and Some of Its Consequences 1. The Axiom of Choice and Equivalent Statements 2. Some Weaker Versions of the Axiom of Choice 3. Definable Sets 4. Set Theory with Global Choice 5. Cardinal ExponentiationPart B. Applications and Advanced Topics Chapter VI. A Review of Point Set Topology 1. Basic concepts 2. Useful Properties and Operations 3. Category, Baire and Borel Sets Chapter VII. The Real Spaces 1. The Real Numbers 2. The Separable Complete Metric Spaces 3. The Close Relationship Between the Real Numbers, the Cantor Space and the Baire Space Chapter VIII. Boolean Algebras 1. The Basic Theory 2. Prime Ideals and Representation 3. Complete Boolean Algebras 4. Martin's Axiom Chapter IX. Infinite Combinatorics and Large Cardinals 1. The Axiom of Constructibility 2. Trees 3. Partition Properties 4. Measurable CardinalsAppendix X. The Eliminability and Conservation Theorems Bibliography; Additional Bibliography; Index of Notation; IndexAppendix Corrections and Additions
Erscheint lt. Verlag | 11.6.2012 |
---|---|
Reihe/Serie | Dover Books on Mathematics |
Sprache | englisch |
Maße | 160 x 160 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Logik / Mengenlehre |
ISBN-10 | 0-486-15073-9 / 0486150739 |
ISBN-13 | 978-0-486-15073-4 / 9780486150734 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich