Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Differential Geometry (eBook)

eBook Download: EPUB
2013
384 Seiten
Dover Publications (Verlag)
978-0-486-31862-2 (ISBN)

Lese- und Medienproben

Differential Geometry -  Erwin Kreyszig
Systemvoraussetzungen
21,55 inkl. MwSt
(CHF 20,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.
This outstanding textbook by a distinguished mathematical scholar introduces the differential geometry of curves and surfaces in three-dimensional Euclidean space. The subject is presented in its simplest, most essential form, but with many explanatory details, figures and examples, and in a manner that conveys the geometric significance and theoretical and practical importance of the different concepts, methods and results involved.The first chapters of the book focus on the basic concepts and facts of analytic geometry, the theory of space curves, and the foundations of the theory of surfaces, including problems closely related to the first and second fundamental forms. The treatment of the theory of surfaces makes full use of the tensor calculus.The later chapters address geodesics, mappings of surfaces, special surfaces, and the absolute differential calculus and the displacement of Levi-Cività. Problems at the end of each section (with solutions at the end of the book) will help students  meaningfully review the material presented, and familiarize themselves with the manner of reasoning in differential geometry.

PREFACE CHAPTER I. PRELIMINARIES 1. Notation 2. Nature and purpose of differential geometry 3. Concept of mapping. Coordinates in Euclidean space 4. Vectors in Euclidean space 5. Basic rules of vector calculus in Euclidean space CHAPTER II. THEORY OF CURVES 6. The concept of a curve in differential geometry 7. Further remarks on the concept of a curve 8. Examples of special curves 9. Arc length 10. Tangent and normal plane 11. Osculating plane 12. "Principal normal, curvature, osculating circle "13. Binormal. Moving trihedron of a curve 14. Torsion 15. Formulae of Frenet 16. "Motion of the trihedron, vector of Darboux "17. Spherical images of a curve 18. Shape of a curve in the neighbourhood of any of its points (canonical representation) 19. "Contact, osculating sphere "20. Natural equations of a curve 21. Examples of curves and their natural equations 22. Involutes and evolutes 23. Bertrand curves CHAPTER III. CONCEPT OF A SURFACE. FIRST FUNDAMENTAL FORM. FOUNDATIONS OF TENSOR.CALCULUS 24. Concept of a surface in differential geometry 25. "Further remarks on the representation of surfaces, examples "26. "Curves on a surface, tangent plane to a surface "27. First fundamental form. Concept of Riemannian geometry. Summation convention 28. Properties of the first fundamental form 29. Contravariant and covariant vectors 30. "Contravariant, covariant, and mixed tensors "31. Basic rules of tensor calculus 32. Vactors in a surface. The contravariant metric tensor 33. Special tensors 34. Normal to a surface 35. Measurement of lengths and angles in a surface 36. Area 37. Remarks on the definition of area CHAPTER IV. SECOND FUNDAMENTAL FORM. GAUSSIAN AND MEAN CURVATURE OF A SURFACE 38. Second fundamental form 39. Arbitrary and nonnal sections of a surface. Meusnier's theorem. Asymptotic lines 40. "Elliptic, parabolic, and hyperbolic points of a surface "41. Principal curvature. Lines of curvature. Gaussian and mean curvature 42. Euler's theorem. Dupin's indicatrix 43. Torus 44. Flat points. Saddle points of higher type 45. Formulae of Weingarten and Gauss 46. Integrability conditions of the formulae of Weingarten and Gauss. Curvature tensors. Theorema. egregium47. Properties of the Christoffel symbols 48. Umbilics CHAPTER V. GEODESIC CURVATURE AND GEODESICS 49. Geodesic curvature 50. Geodesics 51. Arcs of minimum length 52. Geodesic parallel coordinates 53. Geodesic polar coordinates 54. Theorem of Gauss-Bonnet. Integral curvature 55. Application of the Gauss-Bonnet theorem to closed surfaces CHAPTER VI. MAPPINGS 56. Preliminaries 57. Isometric mapping. Bending. Concept of intrinsic geometry of a surface 58. "Ruled surfaces, developable surfaces "59. Spherical image of a surface. Third fundamental form. Isometric mapping of developable surfaces 60. Conjugate directions. Conjugate families of curves. Developable surfaces contacting a surface. 61. Conformal mapping 62. Conformal mnpping of surfaces into a plane 63. Isotropic curves and isothermic coordinates 64. The Bergman metric 65. Conformal mapping of a sphere into a plane. Stereographic and Mercator projection 66. Equiareal mappings 67. "Equiareal mapping of spheres into planes. Mappings of Lambert, Sanson, and Bonne "68. Conformal mapping of the Euclidean space CHAPTER VII. ABSOLUTE DIFFERENTIATION AND PARALLEL DISPLACEMENT 69. Concept of absolute differentiation 70. Absolute differentiation of tensors of first order 71. Absolute differentiation of tensors of arbitrary order 72. Further properties of absolute differentiation 73. Interchange of the order of absolute differentiation. The Ricci identity74. Bianchi identities 75. Differential parameters of Beltrami 76. Definition of the displacement of Levi-Cività77. Further properties of the displacement of Levi-Cività78. A more general definition of absolute differentiation and displacement of Levi-CivitàCHAPTER VIII. SPECIAL SURFACES 79. Definition and simple properties of minimal surfaces 80. Surfaces of smallest area81. Examples of minimal surfaces 82. Relations between function theory and minimal surfaces. The formulae of Weierstrass 83. Minimal surfaces as translation surfaces with isotropic generators 84. Modular surfaces of analytic functions 85. Envelope of a one-parameter family of surfaces 86. Developable surfaces as envelopes of families of planes 87. "Envelope of the osculating, normal, and rectifying planes of a curve, polar surface "88. Centre surfaces of a surface 89. Parallel surfaces 90. Surfaces of constant Gaussian curvature 91. Isometric mapping of surfaces of constant Gaussian curvature 92. Spherical surfaces of revolution 93. Pseudospherical surfaces of revolution 94. Goodesic mapping 95. Geodesic mapping of surfaces of constant Gaussian curvature 96. Surfaces of constant Gaussian curvature and non-Euclidean geometry ANSWERS TO PROBLEMS COLLECTION OF FORMULAE BIBLIOGRAPHY INDEX

Erscheint lt. Verlag 26.4.2013
Reihe/Serie Dover Books on Mathematics
Dover Books on Mathematics
Zusatzinfo 99
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte 10th • advanced study • advanced text • Advanced Topics • Algebraic Geometry • applied math • Applied mathematics • bit terse • books on advanced studies • books on advanced texts • books on algebraic geometries • books on applied mathematics • books on applied maths • books on calculus textbooks • books on develops ideas • books on electrical engineerings • books on engineering courses • books on engineering students • books on functional analysis • books on math courses • books on math texts • books on math topics • books on matrix algebras • books on numerical methods • books on projective geometries • books on pure mathematics • books on self studies • books on signal processings • books on tensor analysis • calculus textbook • chapter 0 • cited • Complex Analysis • Coordinate Systems • Covariant • covers practically • Coxeter • Curvature • Curves • develops ideas • differentiable • Differential Equations • doctoral level • Electrical Engineering • engineering courses • engineering students • engineers • Euclid • euclidean • Exercises • Fourier • Functional Analysis • Geometric • graduate students • introductory • Laplace • linear algebra • Manifolds • Mappings • math courses • Mathematical • mathematics required • math major • Maths • math text • math topic • Matrix Algebra • metric • Notation • Numerical Methods • odes • partial differential • Projective Geometry • proofs • Pure Mathematics • quantum mechanics • Relativity • riemannian • self study • Semester • Signal Processing • strong background • Surfaces • Tensor Analysis • tensor calculus • Tensors • Theorems • topics covered • Topology • undergraduate engineering • Vector • wylie
ISBN-10 0-486-31862-1 / 0486318621
ISBN-13 978-0-486-31862-2 / 9780486318622
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich