Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Evolutionary Algorithms (eBook)

eBook Download: PDF
2017 | 1. Auflage
256 Seiten
John Wiley & Sons (Verlag)
978-1-119-13638-5 (ISBN)

Lese- und Medienproben

Evolutionary Algorithms - Alain Petrowski, Sana Ben-Hamida
Systemvoraussetzungen
139,99 inkl. MwSt
(CHF 136,75)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Evolutionary algorithms are bio-inspired algorithms based on Darwin's theory of evolution. They are expected to provide non-optimal but good quality solutions to problems whose resolution is impracticable by exact methods.

In six chapters, this book presents the essential knowledge required to efficiently implement evolutionary algorithms.

Chapter 1 describes a generic evolutionary algorithm as well as the basic operators that compose it. Chapter 2 is devoted to the solving of continuous optimization problems, without constraint. Three leading approaches are described and compared on a set of test functions. Chapter 3 considers continuous optimization problems with constraints. Various approaches suitable for evolutionary methods are presented. Chapter 4 is related to combinatorial optimization. It provides a catalog of variation operators to deal with order-based problems. Chapter 5 introduces the basic notions required to understand the issue of multi-objective optimization and a variety of approaches for its application. Finally, Chapter 6 describes different approaches of genetic programming able to evolve computer programs in the context of machine learning.

Alain PÉTROWSKI is Associate Professor in the Department of Networks and Mobile Multimedia Services at the Telecom-SudParis, Institut Mines-Télécom, Paris-Saclay University, France. His main research interests are related to optimization, metaheuristics and machine learning.

Preface xi

Chapter 1 Evolutionary Algorithms 1

1.1 From natural evolution to engineering 1

1.2 A generic evolutionary algorithm 3

1.3 Selection operators 5

1.4 Variation operators and representation 21

1.5 Binary representation 25

1.6 The simple genetic algorithm 30

1.7 Conclusion 31

Chapter 2 Continuous Optimization 33

2.1 Introduction 33

2.2 Real representation and variation operators for evolutionary algorithms 35

2.3 Covariance Matrix Adaptation Evolution Strategy 46

2.4 A restart CMA Evolution Strategy 55

2.5 Differential Evolution (DE) 57

2.6 Success-History based Adaptive Differential Evolution (SHADE) 65

2.7 Particle Swarm Optimization 70

2.8 Experiments and performance comparisons 77

2.9 Conclusion 88

2.10 Appendix: set of basic objective functions used for the experiments 89

Chapter 3 Constrained Continuous Evolutionary Optimization 93

3.1 Introduction 93

3.2 Penalization 98

3.3 Superiority of feasible solutions 112

3.4 Evolving on the feasible region 117

3.5 Multi-objective methods 123

3.6 Parallel population approaches 130

3.7 Hybrid methods 132

3.8 Conclusion 132

Chapter 4 Combinatorial Optimization 135

4.1 Introduction 135

4.2 The binary representation and variation operators 140

4.3 Order-based Representation and variation operators 143

4.4 Conclusion 163

Chapter 5 Multi-objective Optimization 165

5.1 Introduction 165

5.2 Problem formalization 166

5.3 The quality indicators 167

5.4 Multi-objective evolutionary algorithms 169

5.5 Methods using a "Pareto ranking" 169

5.6 Many-objective problems 176

5.7 Conclusion 181

Chapter 6 Genetic Programming for Machine Learning 183

6.1 Introduction 183

6.2 Syntax tree representation 186

6.3 Evolving the syntax trees 187

6.4 GP in action: an introductory example 194

6.5 Alternative Genetic Programming Representations 200

6.6 Example of application: intrusion detection in a computer system 210

6.7 Conclusion 215

Bibliography 217

Index 233

In general, Petrowski and Ben-Hamid display an in-depth understanding of several optimization classes and their corresponding evolutionary algorithms, along with an impressive ability to explain, illustrate, motivate, classify and codify. Although nobody can "do it all" in a field as deep and wide as evolutionary computation, they have chosen a pertinent subset and done a fine job with it. My own copy of "Evolutionary Algorithms" became an instant go-to reference as I prepare for another semester of teaching.
(Genetic Programming and Evolvable Machines, December 2018)

Erscheint lt. Verlag 12.4.2017
Sprache englisch
Themenwelt Informatik Theorie / Studium Algorithmen
Schlagworte Algorithmen u. Datenstrukturen • Algorithms & Data Structures • Computer Science • Informatik
ISBN-10 1-119-13638-5 / 1119136385
ISBN-13 978-1-119-13638-5 / 9781119136385
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 5,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Build memory-efficient cross-platform applications using .NET Core

von Trevoir Williams

eBook Download (2024)
Packt Publishing (Verlag)
CHF 29,30
Learn asynchronous programming by building working examples of …

von Carl Fredrik Samson

eBook Download (2024)
Packt Publishing Limited (Verlag)
CHF 29,30