Visual Attributes (eBook)
VIII, 364 Seiten
Springer International Publishing (Verlag)
978-3-319-50077-5 (ISBN)
This unique text/reference provides a detailed overview of the latest advances in machine learning and computer vision related to visual attributes, highlighting how this emerging field intersects with other disciplines, such as computational linguistics and human-machine interaction. Topics and features: presents attribute-based methods for zero-shot classification, learning using privileged information, and methods for multi-task attribute learning; describes the concept of relative attributes, and examines the effectiveness of modeling relative attributes in image search applications; reviews state-of-the-art methods for estimation of human attributes, and describes their use in a range of different applications; discusses attempts to build a vocabulary of visual attributes; explores the connections between visual attributes and natural language; provides contributions from an international selection of world-renowned scientists, covering both theoretical aspects and practical applications.
Dr. Rogerio Schmidt Feris is a manager at IBM T.J. Watson Research Center, New York, USA, where he leads research in computer vision and machine learning.
Dr. Christoph H. Lampert is a professor at the Institute of Science and Technology Austria, where he serves as the Principal Investigator of the Computer Vision and Machine Learning Group.
Dr. Devi Parikh is an assistant professor in the School of Interactive Computing at Georgia Tech, USA, where she leads the Computer Vision Lab.
Dr. Rogerio Schmidt Feris is a manager at IBM T.J. Watson Research Center, New York, USA, where he leads research in computer vision and machine learning.Dr. Christoph H. Lampert is a professor at the Institute of Science and Technology Austria, where he serves as the Principal Investigator of the Computer Vision and Machine Learning Group.Dr. Devi Parikh is an assistant professor in the School of Interactive Computing at Georgia Tech, USA, where she leads the Computer Vision Lab.
Introduction to Visual Attributes Rogerio Feris, Christoph Lampert, and Devi Parikh
Part I: Attribute-Based Recognition
An Embarrassingly Simple Approach to Zero-Shot Learning Bernardino Romera-Paredes and Philip H. S. Torr
In the Era of Deep Convolutional Features: Are Attributes still Useful Privileged Data? Viktoriia Sharmanska and Novi Quadrianto
Divide, Share, and Conquer: Multi-Task Attribute Learning with Selective Sharing Chao-Yeh Chen, Dinesh Jayaraman, Fei Sha, and Kristen Grauman
Part II: Relative Attributes and their Application to Image Search
Attributes for Image Retrieval Adriana Kovashka and Kristen Grauman
Fine-Grained Comparisons with Attributes Aron Yu and Kristen Grauman
Localizing and Visualizing Relative Attributes Fanyi Xiao and Yong Jae Lee
Part III: Describing People Based on Attributes
Deep Learning Face Attributes for Detection and Alignment Chen Change Loy, Ping Luo, and Chen Huang
Visual Attributes for Fashion Analytics Si Liu, Lisa Brown, Qiang Chen, Junshi Huang, Luoqi Liu, and Shuicheng Yan
Part IV: Defining a Vocabulary of Attributes
A Taxonomy of Part and Attribute Discovery Techniques Subhransu Maji
The SUN Attribute Database: Organizing Scenes by Affordances, Materials, and Layout Genevieve Patterson and James Hays
Part V: Attributes and Language
Attributes as Semantic Units Between Natural Language and Visual Recognition Marcus Rohrbach
Grounding the Meaning of Words with Visual Attributes Carina Silberer
Erscheint lt. Verlag | 21.3.2017 |
---|---|
Reihe/Serie | Advances in Computer Vision and Pattern Recognition | Advances in Computer Vision and Pattern Recognition |
Zusatzinfo | VIII, 364 p. 142 illus., 137 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Schlagworte | computer vision • Fine-Grained Classification • Human-Machine Communication • Image Search and Retrieval • machine learning • Sentence Generation from Images • Visual Analysis Beyond Semantics • Visual Attributes • Zero-Shot Learning |
ISBN-10 | 3-319-50077-5 / 3319500775 |
ISBN-13 | 978-3-319-50077-5 / 9783319500775 |
Haben Sie eine Frage zum Produkt? |
Größe: 21,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich