Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Perturbations, Optimization, and Statistics -

Perturbations, Optimization, and Statistics

Buch | Hardcover
412 Seiten
2016
MIT Press (Verlag)
978-0-262-03564-4 (ISBN)
CHF 99,50 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
A description of perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees.

In nearly all machine learning, decisions must be made given current knowledge. Surprisingly, making what is believed to be the best decision is not always the best strategy, even when learning in a supervised learning setting. An emerging body of work on learning under different rules applies perturbations to decision and learning procedures. These methods provide simple and highly efficient learning rules with improved theoretical guarantees. This book describes perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees, offering readers a state-of-the-art overview.

Chapters address recent modeling ideas that have arisen within the perturbations framework, including Perturb & MAP, herding, and the use of neural networks to map generic noise to distribution over highly structured data. They describe new learning procedures for perturbation models, including an improved EM algorithm and a learning algorithm that aims to match moments of model samples to moments of data. They discuss understanding the relation of perturbation models to their traditional counterparts, with one chapter showing that the perturbations viewpoint can lead to new algorithms in the traditional setting. And they consider perturbation-based regularization in neural networks, offering a more complete understanding of dropout and studying perturbations in the context of deep neural networks.

Tamir Hazan is Assistant Professor at Technion, Israel Institute of Technology. George Papandreou is a Research Scientist for Google, Inc. Daniel Tarlow is a Researcher at Microsoft Research Cambridge, UK. Alan Yuille is Professor in the Department of Statistics, University of California, Los Angeles. George Papandreou is a Research Scientist for Google, Inc. Daniel Tarlow is a Researcher at Microsoft Research Cambridge, UK. Tamir Hazan is Assistant Professor at Technion, Israel Institute of Technology. Ian Goodfellow is a Research Scientist at Google.

Erscheinungsdatum
Reihe/Serie Perturbations, Optimization, and Statistics
Zusatzinfo 174 b&w illus.
Verlagsort Cambridge, Mass.
Sprache englisch
Maße 203 x 254 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
ISBN-10 0-262-03564-2 / 0262035642
ISBN-13 978-0-262-03564-4 / 9780262035644
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20