Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Astronomy and Big Data - Kieran Jay Edwards, Mohamed Medhat Gaber

Astronomy and Big Data

A Data Clustering Approach to Identifying Uncertain Galaxy Morphology
Buch | Softcover
XII, 105 Seiten
2016 | 1. Softcover reprint of the original 1st ed. 2014
Springer International Publishing (Verlag)
978-3-319-38328-6 (ISBN)
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing has proved extremely beneficial. However, an analysis of one of the Galaxy Zoo morphological classification data sets has shown that a significant majority of all classified galaxies are labelled as "Uncertain".

This book reports on how to use data mining, more specifically clustering, to identify galaxies that the public has shown some degree of uncertainty for as to whether they belong to one morphology type or another. The book shows the importance of transitions between different data mining techniques in an insightful workflow. It demonstrates that Clustering enables to identify discriminating features in the analysed data sets, adopting a novel feature selection algorithms called Incremental Feature Selection (IFS). The book shows the use of state-of-the-art classification techniques, Random Forests and Support Vector Machines to validate the acquired results. It is concluded that a vast majority of these galaxies are, in fact, of spiral morphology with a small subset potentially consisting of stars, elliptical galaxies or galaxies of other morphological variants.

Introduction.- Astronomy, Galaxies and Stars: An Overview.- Astronomical Data Mining.- Adopted Data Mining Methods.- Research Methodology.- Development of Data Mining Models.- Experimentation Results.- Conclusion and Future Work.

Erscheinungsdatum
Reihe/Serie Studies in Big Data
Zusatzinfo XII, 105 p. 54 illus., 24 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Technik
Schlagworte Artificial Intelligence • artificial intelligence (incl. robotics) • Astronomy • Astronomy, Observations and Techniques • Astronomy, space and time • Big Data • citizen science • Computational Intelligence • Data Clustering • Data Mining • data mining and knowledge discovery • Engineering • Expert systems / knowledge-based systems • Galaxy morphology • Galaxy Zoo Project • Robotics
ISBN-10 3-319-38328-0 / 3319383280
ISBN-13 978-3-319-38328-6 / 9783319383286
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85