Sentiment Analysis in Social Networks
Morgan Kaufmann Publishers In (Verlag)
978-0-12-804412-4 (ISBN)
Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature.
Further, this volume:
Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologies
Provides insights into opinion spamming, reasoning, and social network analysis
Shows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequences
Serves as a one-stop reference for the state-of-the-art in social media analytics
Dr. Federico Alberto Pozzi received the Ph.D. in Computer Science at the University of Milano - Bicocca (Italy). His Ph.D. thesis is focused on Probabilistic Relational Models for Sentiment Analysis in Social Networks. His research interests primarily focus on Data Mining, Text Mining, Machine Learning, Natural Language Processing and Social Network Analysis, in particular applied to Sentiment Analysis and Community Discovery in Social Networks. He currently works at SAS Institute (Italy) as Senior Solutions Specialist - Integrated Marketing Management & Analytics. Dr. Elisabetta Fersini is currently a postdoctoral research fellow at the University of Milano - Bicocca (Italy). Her research activity is mainly focused on statistical relational learning with particular interests in supervised and unsupervised classification. The research activity finds application to Web/Text mining, Sentiment Analysis, Social Network Analysis, e-Justice and Bioinformatics. She actively participated to several national and international research projects. She has been an evaluator for international research projects and member of different scientific committees. She co-founded an academic spin-off specialized in sentiment analysis and community discovery in social networks. Prof. Enza Messina is a Professor in Operations Research at the Department of Informatics Systems and Communications, University of Milano-Bicocca, where she leads the research Laboratory MIND (Models in decision making and data analysis). She holds a Ph.D. in Computational Mathematics and Operations Research from the University of Milano. Her research activity is mainly focused on decision models under uncertainty and more recently on statistical relational models for data analysis and knowledge extraction. In particular, she developed relational classi_x000C_cation and clustering models that finds applications in different domains such as systems biology, e-justice, text mining and social network analysis. Dr Bing Liu is an Associate Professor at the College of Agriculture, Nanjing Agricultural University, China. He received his PhD in Information Agriculture in 2016 from Nanjing Agricultural University. His research areas include extreme climate effects on crop growth, yield, and quality; agricultural systems modelling; and climate change impact assessment and adaptation.
Chapter 1: Challenges of Sentiment Analysis in Social Networks: An Overview
Chapter 2: Beyond Sentiment: How Social Network Analytics Can Enhance Opinion Mining and Sentiment Analysis
Chapter 3: Semantic Aspects in Sentiment Analysis
Chapter 4: Linked Data Models for Sentiment and Emotion Analysis in Social Networks
Chapter 5: Sentic Computing for Social Network Analysis
Chapter 6: Sentiment Analysis in Social Networks: A Machine Learning Perspective
Chapter 7: Irony, Sarcasm, and Sentiment Analysis
Chapter 8: Suggestion Mining From Opinionated Text
Chapter 9: Opinion Spam Detection in Social Networks
Chapter 10: Opinion Leader Detection
Chapter 11: Opinion Summarization and Visualization
Chapter 12: Sentiment Analysis With SpagoBI
Chapter 13: SOMA: The Smart Social Customer Relationship Management Tool: Handling Semantic Variability of Emotion Analysis With Hybrid Technologies
Chapter 14: The Human Advantage: Leveraging the Power of Predictive Analytics to Strategically Optimize Social Campaigns
Chapter 15: Price-Sensitive Ripples and Chain Reactions: Tracking the Impact of Corporate Announcements With Real-Time Multidimensional Opinion Streaming
Chapter 16: Conclusion and Future Directions
Erscheinungsdatum | 11.11.2016 |
---|---|
Verlagsort | San Francisco |
Sprache | englisch |
Maße | 191 x 235 mm |
Gewicht | 750 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Netzwerke |
ISBN-10 | 0-12-804412-8 / 0128044128 |
ISBN-13 | 978-0-12-804412-4 / 9780128044124 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich