Heat Transfer of Laminar Mixed Convection of Liquid (eBook)
XVII, 226 Seiten
Springer International Publishing (Verlag)
978-3-319-27959-6 (ISBN)
This book presents a new algorithm to calculate fluid flow and heat transfer of laminar mixed convection. It provides step-by-step tutorial help to learn quickly how to set up the theoretical and numerical models of laminar mixed convection, to consider the variable physical properties of fluids, to obtain the system of numerical solutions, to create a series of formalization equations for the convection heat transfer by using a curve-fitting approach combined with theoretical analysis and derivation. It presents the governing ordinary differential equations of laminar mixed convection, equivalently transformed by an innovative similarity transformation with the description of the related transformation process. A system of numerical calculations of the governing ordinary differential equations is presented for the water laminar mixed convection. A polynomial model is induced for convenient and reliable treatment of variable physical properties of liquids. The developed formalization equations of mixed convection heat transfer coefficient have strong theoretical and practical value for heat transfer applications because they are created based on a better consideration of variable physical properties of fluids, accurate numerical solutions and rigorous formalization equations combined with rigorous theoretical derivation. This book is suitable for scientific researchers, engineers, professors, master and PhD students of fluid mechanics and convection heat and mass transfer.
De-Yi Shang, Dr. of Tsinghua University and former professor of Northeastern University, now resides in Canada. He is an active scientist with special contributions to convection heat and mass transfer. He developed an innovative similarity transformation of velocity fields on laminar boundary layers as a better alternative to the currently popular Falkner-Skan transformation, leading to convenience for consideration of coupled effects of variable physical properties in convection heat and mass transfer. He proposed novel models for treatment of temperature-dependent physical properties of gases and liquids and weighted concentration- and temperature-dependent physical properties of vapor-gas mixture. He contributed a series of extensive studies on convection of heat and mass transfer without and with fluid phase change with significant theoretical and practical value. His work on convection heat and mass transfer of film condensation of vapor-gas mixtures is of international importance. He is author of three scientific Springer monographs and of many journal papers on theory and practical application of heat and mass transfer. In 1996, he was awarded scientific grants by the Norwegian Research Council as outstanding foreign scientist with proven international reputation. In 1999, as an eminent scientist, he was included in Who's Who in the World. In 2011, his biographical sketch was included in Who's Who in Thermal Fluids. In 2014. He was appointed a lead guest editor of the Science Publishing Group (New York, USA) responsible for Special Issues on Convection Heat and Mass Transfer. In 2015, he was nominated by the University of Cambridge as candidate for the Batchelor prize (the world's highest award of once every 4 years in recognition of the outstanding contribution of fluid mechanics research).
De-Yi Shang, Dr. of Tsinghua University and former professor of Northeastern University, now resides in Canada. He is an active scientist with special contributions to convection heat and mass transfer. He developed an innovative similarity transformation of velocity fields on laminar boundary layers as a better alternative to the currently popular Falkner-Skan transformation, leading to convenience for consideration of coupled effects of variable physical properties in convection heat and mass transfer. He proposed novel models for treatment of temperature-dependent physical properties of gases and liquids and weighted concentration- and temperature-dependent physical properties of vapor-gas mixture. He contributed a series of extensive studies on convection of heat and mass transfer without and with fluid phase change with significant theoretical and practical value. His work on convection heat and mass transfer of film condensation of vapor-gas mixtures is of international importance. He is author of three scientific Springer monographs and of many journal papers on theory and practical application of heat and mass transfer. In 1996, he was awarded scientific grants by the Norwegian Research Council as outstanding foreign scientist with proven international reputation. In 1999, as an eminent scientist, he was included in Who’s Who in the World. In 2011, his biographical sketch was included in Who’s Who in Thermal Fluids. In 2014. He was appointed a lead guest editor of the Science Publishing Group (New York, USA) responsible for Special Issues on Convection Heat and Mass Transfer.
Introduction.- Conservation Equations for Laminar Mixed Convection.- An Innovative Similarity Transformation.- Similarity Transformation of Governing Partial Differential Equations.- Hydrodynamics.- Heat Transfer.- Similarity Transformation of Governing Partial Differential Equations.- Velocity Fields.- Skin-Friction Coefficient.- Temperature Fields.- Theoretical Heat Transfer Equation and Wall Temperature Gradient.- Effect of Local Prandtl Number on Wall Temperature Gradient.- Formulization Equations of Wall Temperature Gradient.- Verification of Formulated Correlation Equations on Wall Temperature Gradient.
Erscheint lt. Verlag | 8.3.2016 |
---|---|
Reihe/Serie | Heat and Mass Transfer | Heat and Mass Transfer |
Zusatzinfo | XVII, 226 p. 74 illus., 51 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Naturwissenschaften ► Physik / Astronomie | |
Technik | |
Schlagworte | Calculating fluids flow • fluid- and aerodynamics • Formulization equation of heat Transfet • Mixed convection • Similarity Transformation • Variable physical properties • Water laminar mixed convection |
ISBN-10 | 3-319-27959-9 / 3319279599 |
ISBN-13 | 978-3-319-27959-6 / 9783319279596 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich