Machine Learning
The New AI
Seiten
2016
MIT Press (Verlag)
978-0-262-52951-8 (ISBN)
MIT Press (Verlag)
978-0-262-52951-8 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
A concise overview of machine learning-computer programs that learn from data-which underlies applications that include recommendation systems, face recognition, and driverless cars.
Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition-as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as "Big Data" has gotten bigger, the theory of machine learning-the foundation of efforts to process that data into knowledge-has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications.
Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of "data science," and discusses the ethical and legal implications for data privacy and security.
Today, machine learning underlies a range of applications we use every day, from product recommendations to voice recognition-as well as some we don't yet use everyday, including driverless cars. It is the basis of the new approach in computing where we do not write programs but collect data; the idea is to learn the algorithms for the tasks automatically from data. As computing devices grow more ubiquitous, a larger part of our lives and work is recorded digitally, and as "Big Data" has gotten bigger, the theory of machine learning-the foundation of efforts to process that data into knowledge-has also advanced. In this book, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general reader, describing its evolution, explaining important learning algorithms, and presenting example applications.
Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context. He describes the basics of machine learning and some applications; the use of machine learning algorithms for pattern recognition; artificial neural networks inspired by the human brain; algorithms that learn associations between instances, with such applications as customer segmentation and learning recommendations; and reinforcement learning, when an autonomous agent learns act so as to maximize reward and minimize penalty. Alpaydin then considers some future directions for machine learning and the new field of "data science," and discusses the ethical and legal implications for data privacy and security.
Ethem Alpaydin is Professor in the Department of Computer Engineering at OEzyegin University and Member of The Science Academy, Istanbul. He is the author of Machine Learning: The New AI, a volume in the MIT Press Essential Knowledge series.s).
Erscheinungsdatum | 20.11.2016 |
---|---|
Reihe/Serie | MIT Press Essential Knowledge series |
Zusatzinfo | 10 b&w illus.; 20 Illustrations |
Verlagsort | Cambridge, Mass. |
Sprache | englisch |
Maße | 127 x 178 mm |
Themenwelt | Geschichte ► Teilgebiete der Geschichte ► Technikgeschichte |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
ISBN-10 | 0-262-52951-3 / 0262529513 |
ISBN-13 | 978-0-262-52951-8 / 9780262529518 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
Lehmanns Media (Verlag)
CHF 27,90
Digitalisierung neu denken für eine gerechte Gesellschaft
Buch | Hardcover (2023)
Quadriga (Verlag)
CHF 27,95
Vom Perceptron zum Deep Learning
Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 27,95