Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Artificial Immune System - Ying Tan

Artificial Immune System

Applications in Computer Security

(Autor)

Buch | Hardcover
208 Seiten
2016
John Wiley & Sons (Verlag)
978-1-119-07628-5 (ISBN)
CHF 154,20 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book deals with malware detection in terms of Artificial Immune System (AIS), and presents a number of AIS models and immune-based feature extraction approaches as well as their applications in computer security
  • Covers all of the current achievements in computer security based on immune principles, which were obtained by the Computational Intelligence Laboratory of Peking University, China
  • Includes state-of-the-art information on designing and developing artificial immune systems (AIS) and AIS-based solutions to computer security issues
  • Presents new concepts such as immune danger theory, immune concentration, and class-wise information gain (CIG)

Ying Tan, PhD, is a Professor of Peking University, China. Dr. Tan is also the director of CIL@PKU. He serves as the editor-in-chief of International Journal of Computational Intelligence and Pattern Recognition, associate editor of IEEE Transactions on Cybernetics, IEEE Transactions on Neural Networks and Learning Systems, and International Journal of Swarm Intelligence Research, and also as an Editor of Springer s Lecture Notes on Computer Science (LNCS). He is the founder and chair of the ICSI International Conference series. Dr. Tan is a senior member of the IEEE, ACM, and CIE. He has published over two-hundred papers in refereed journals and conferences in areas such as computational intelligence, swarm intelligence, data mining, and pattern recognition for information security.

Preface xiii

About Author xxi

Acknowledgements xxiii

1 Artificial Immune System 1

1.1 Introduction 1

1.2 Biological Immune System 2

1.2.1 Overview 2

1.2.2 Adaptive Immune Process 3

1.3 Characteristics of BIS 4

1.4 Artificial Immune System 6

1.5 AIS Models and Algorithms 8

1.5.1 Negative Selection Algorithm 8

1.5.2 Clonal Selection Algorithm 9

1.5.3 Immune Network Model 11

1.5.4 Danger Theory 12

1.5.5 Immune Concentration 13

1.5.6 Other Methods 14

1.6 Characteristics of AIS 15

1.7 Applications of Artificial Immune System 16

1.7.1 Virus Detection 16

1.7.2 Spam Filtering 16

1.7.3 Robots 20

1.7.4 Control Engineering 21

1.7.5 Fault Diagnosis 22

1.7.6 Optimized Design 22

1.7.7 Data Analysis 22

1.8 Summary 22

2 Malware Detection 27

2.1 Introduction 27

2.2 Malware 28

2.2.1 Definition and Features 28

2.2.2 The Development Phases of Malware 29

2.3 Classic Malware Detection Approaches 30

2.3.1 Static Techniques 31

2.3.2 Dynamic Techniques 31

2.3.3 Heuristics 32

2.4 Immune Based Malware Detection Approaches 34

2.4.1 An Overview of Artificial Immune System 34

2.4.2 An Overview of Artificial Immune System for Malware Detection 35

2.4.3 An Immune Based Virus Detection System Using Affinity Vectors 36

2.4.4 A Hierarchical Artificial Immune Model for Virus Detection 38

2.4.5 A Malware Detection Model Based on a Negative Selection Algorithm with Penalty Factor 2.5 Summary 43

3 Immune Principle and Neural Networks Based Malware Detection 47

3.1 Introduction 47

3.2 Immune System for Malicious Executable Detection 48

3.2.1 Non-self Detection Principles 48

3.2.2 Anomaly Detection Based on Thickness 48

3.2.3 Relationship Between Diversity of Detector Representation and Anomaly Detection Hole 48

3.3 Experimental Dataset 48

3.4 Malware Detection Algorithm 49

3.4.1 Definition of Data Structures 49

3.4.2 Detection Principle and Algorithm 49

3.4.3 Generation of Detector Set 50

3.4.4 Extraction of Anomaly Characteristics 50

3.4.5 Classifier 52

3.5 Experiment 52

3.5.1 Experimental Procedure 53

3.5.2 Experimental Results 53

3.5.3 Comparison With Matthew G. Schultz’s Method 55

3.6 Summary 57

4 Multiple-Point Bit Mutation Method of Detector Generation 59

4.1 Introduction 59

4.2 Current Detector Generating Algorithms 60

4.3 Growth Algorithms 60

4.4 Multiple Point Bit Mutation Method 62

4.5 Experiments 62

4.5.1 Experiments on Random Dataset 62

4.5.2 Change Detection of Static Files 65

4.6 Summary 65

5 Malware Detection System Using Affinity Vectors 67

5.1 Introduction 67

5.2 Malware Detection Using Affinity Vectors 68

5.2.1 Sliding Window 68

5.2.2 Negative Selection 68

5.2.3 Clonal Selection 69

5.2.4 Distances 70

5.2.5 Affinity Vector 71

5.2.6 Training Classifiers with Affinity Vectors 71

5.3 Evaluation of Affinity Vectors based malware detection System 73

5.3.1 Dataset 73

5.3.2 Length of Data Fragment 73

5.3.3 Experimental Results 73

5.4 Summary 74

6 Hierarchical Artificial Immune Model 79

6.1 Introduction 79

6.2 Architecture of HAIM 80

6.3 Virus Gene Library Generating Module 80

6.3.1 Virus ODN Library 82

6.3.2 Candidate Virus Gene Library 82

6.3.3 Detecting Virus Gene Library 83

6.4 Self-Nonself Classification Module 84

6.4.1 Matching Degree between Two Genes 84

6.4.2 Suspicious Program Detection 85

6.5 Simulation Results of Hierarchical Artificial Immune Model 86

6.5.1 Data Set 86

6.5.2 Description of Experiments 86

6.6 Summary 89

7 Negative Selection Algorithm with Penalty Factor 91

7.1 Introduction 91

7.2 Framework of NSAPF 92

7.3 Malware signature extraction module 93

7.3.1 Malware Instruction Library (MIL) 93

7.3.2 Malware Candidate Signature Library 94

7.3.3 NSAPF and Malware Detection Signature Library 96

7.4 Suspicious Program Detection Module 97

7.4.1 Signature Matching 97

7.4.2 Matching between Suspicious Programs and the MDSL 97

7.4.3 Analysis of Penalty Factor 98

7.5 Experiments and Analysis 99

7.5.1 Experimental Datasets 99

7.5.2 Experiments on Henchiri dataset 100

7.5.3 Experiments on CILPKU08 Dataset 103

7.5.4 Experiments on VX Heavens Dataset 104

7.5.5 Parameter Analysis 104

7.6 Summary 105

8 Danger Feature Based Negative Selection Algorithm 107

8.1 Introduction 107

8.1.1 Danger Feature 107

8.1.2 Framework of Danger Feature Based Negative Selection Algorithm 107

8.2 DFNSA for Malware Detection 109

8.2.1 Danger Feature Extraction 109

8.2.2 Danger Feature Vector 110

8.3 Experiments 111

8.3.1 Datasets 111

8.3.2 Experimental Setup 111

8.3.3 Selection of Parameters 112

8.3.4 Experimental Results 113

8.4 Discussions 113

8.4.1 Comparison of Detecting Feature Libraries 113

8.4.2 Comparison of Detection Time 114

8.5 Summary 114

9 Immune Concentration Based Malware Detection Approaches 117

9.1 Introduction 117

9.2 Generation of Detector Libraries 117

9.3 Construction of Feature Vector for Local Concentration 122

9.4 Parameters Optimization based on Particle Swarm Optimization 124

9.5 Construction of Feature Vector for Hybrid Concentration 124

9.5.1 Hybrid Concentration 124

9.5.2 Strategies for Definition of Local Areas 126

9.5.3 HC-based Malware Detection Method 127

9.5.4 Discussions 128

9.6 Experiments 130

9.6.1 Experiments of Local Concentration 130

9.6.2 Experiments of Hybrid Concentration 138

9.7 Summary 142

10 Immune Cooperation Mechanism Based Learning Framework 145

10.1 Introduction 145

10.2 Immune Signal Cooperation Mechanism based Learning Framework 148

10.3 Malware Detection Model 151

10.4 Experiments of Malware Detection Model 152

10.4.1 Experimental setup 152

10.4.2 Selection of Parameters 153

10.4.3 Experimental Results 153

10.4.4 Statistical Analysis 155

10.5 Discussions 157

10.5.1 Advantages 157

10.5.2 Time Complexity 157

10.6 Summary 158

11 Class-wise Information Gain 161

11.1 Introduction 161

11.2 Problem Statement 163

11.2.1 Definition of the Generalized Class 163

11.2.2 Malware Recognition Problem 163

11.3 Class-wise Information Gain 164

11.3.1 Definition 164

11.3.2 Analysis 166

11.4 CIG-based Malware Detection Method 170

11.4.1 Feature Selection Module 170

11.4.2 Classification Module 171

11.5 Dataset 172

11.5.1 Benign Program Dataset 172

11.5.2 Malware Dataset 172

11.6 Selection of Parameter 174

11.6.1 Experimental Setup 174

11.6.2 Experiments of Selection of Parameter 174

11.7 Experimental Results 175

11.7.1 Experiments on the VXHeavens Dataset 177

11.7.2 Experiments on the Henchiri Dataset 179

11.7.3 Experiments on the CILPKU08 Dataset 180

11.8 Discussions 180

11.8.1 The Relationship Among IG-A, DFCIG-B and DFCIG-M 181

11.8.2 Space Complexity 182

11.9 Summary 183

Index 185

Verlagsort New York
Sprache englisch
Maße 162 x 242 mm
Gewicht 482 g
Einbandart gebunden
Themenwelt Informatik Theorie / Studium Kryptologie
Informatik Weitere Themen Bioinformatik
Schlagworte Artificial Immune System (AIS) • Computer Security • Immunsystem • Kryptologie • künstliches • Sicherheit
ISBN-10 1-119-07628-5 / 1119076285
ISBN-13 978-1-119-07628-5 / 9781119076285
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich