Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Für diesen Artikel ist leider kein Bild verfügbar.

Data Just Right (eBook)

Introduction to Large-Scale Data & Analytics
eBook Download: PDF
2013 | 1. Auflage
256 Seiten
Pearson Education (Verlag)
978-0-13-335906-0 (ISBN)
Systemvoraussetzungen
24,96 inkl. MwSt
(CHF 24,35)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Making Big Data Work: Real-World Use Cases and Examples, Practical Code, Detailed Solutions

Large-scale data analysis is now vitally important to virtually every business. Mobile and social technologies are generating massive datasets, distributed cloud computing offers the resources to store and analyze them, and professionals have radically new technologies at their command, including NoSQL databases. Until now, however, most books on 'Big Data' have been little more than business polemics or product catalogs. Data Just Right is different: It's a completely practical and indispensable guide for every Big Data decision-maker, implementer, and strategist.

Michael Manoochehri, a former Google engineer and data hacker, writes for professionals who need practical solutions that can be implemented with limited resources and time. Drawing on his extensive experience, he helps you focus on building applications, rather than infrastructure, because that's where you can derive the most value.

Manoochehri shows how to address each of today's key Big Data use cases in a cost-effective way by combining technologies in hybrid solutions. You'll find expert approaches to managing massive datasets, visualizing data, building data pipelines and dashboards, choosing tools for statistical analysis, and more. Throughout, the author demonstrates techniques using many of today's leading data analysis tools, including Hadoop, Hive, Shark, R, Apache Pig, Mahout, and Google BigQuery.

Coverage includes

  • Mastering the four guiding principles of Big Data success—and avoiding common pitfalls
  • Emphasizing collaboration and avoiding problems with siloed data
  • Hosting and sharing multi-terabyte datasets efficiently and economically
  • 'Building for infinity' to support rapid growth
  • Developing a NoSQL Web app with Redis to collect crowd-sourced data
  • Running distributed queries over massive datasets with Hadoop, Hive, and Shark
  • Building a data dashboard with Google BigQuery
  • Exploring large datasets with advanced visualization
  • Implementing efficient pipelines for transforming immense amounts of data
  • Automating complex processing with Apache Pig and the Cascading Java library
  • Applying machine learning to classify, recommend, and predict incoming information
  • Using R to perform statistical analysis on massive datasets
  • Building highly efficient analytics workflows with Python and Pandas
  • Establishing sensible purchasing strategies: when to build, buy, or outsource
  • Previewing emerging trends and convergences in scalable data technologies and the evolving role of the Data Scientist

  • Making Big Data Work: Real-World Use Cases and Examples, Practical Code, Detailed Solutions Large-scale data analysis is now vitally important to virtually every business. Mobile and social technologies are generating massive datasets; distributed cloud computing offers the resources to store and analyze them; and professionals have radically new technologies at their command, including NoSQL databases. Until now, however, most books on "e;Big Data"e; have been little more than business polemics or product catalogs. Data Just Right is different: It's a completely practical and indispensable guide for every Big Data decision-maker, implementer, and strategist. Michael Manoochehri, a former Google engineer and data hacker, writes for professionals who need practical solutions that can be implemented with limited resources and time. Drawing on his extensive experience, he helps you focus on building applications, rather than infrastructure, because that's where you can derive the most value. Manoochehri shows how to address each of today's key Big Data use cases in a cost-effective way by combining technologies in hybrid solutions. You'll find expert approaches to managing massive datasets, visualizing data, building data pipelines and dashboards, choosing tools for statistical analysis, and more. Throughout, the author demonstrates techniques using many of today's leading data analysis tools, including Hadoop, Hive, Shark, R, Apache Pig, Mahout, and Google BigQuery. Coverage includes Mastering the four guiding principles of Big Data success-and avoiding common pitfalls Emphasizing collaboration and avoiding problems with siloed data Hosting and sharing multi-terabyte datasets efficiently and economically "e;Building for infinity"e; to support rapid growth Developing a NoSQL Web app with Redis to collect crowd-sourced data Running distributed queries over massive datasets with Hadoop, Hive, and Shark Building a data dashboard with Google BigQuery Exploring large datasets with advanced visualization Implementing efficient pipelines for transforming immense amounts of data Automating complex processing with Apache Pig and the Cascading Java library Applying machine learning to classify, recommend, and predict incoming information Using R to perform statistical analysis on massive datasets Building highly efficient analytics workflows with Python and Pandas Establishing sensible purchasing strategies: when to build, buy, or outsource Previewing emerging trends and convergences in scalable data technologies and the evolving role of the Data Scientist
    Erscheint lt. Verlag 29.11.2013
    Sprache englisch
    Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
    ISBN-10 0-13-335906-9 / 0133359069
    ISBN-13 978-0-13-335906-0 / 9780133359060
    Haben Sie eine Frage zum Produkt?
    PDFPDF (Adobe DRM)

    Kopierschutz: Adobe-DRM
    Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
    Details zum Adobe-DRM

    Dateiformat: PDF (Portable Document Format)
    Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

    Systemvoraussetzungen:
    PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
    eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
    Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
    Geräteliste und zusätzliche Hinweise

    Buying eBooks from abroad
    For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

    Mehr entdecken
    aus dem Bereich
    Datenschutz und Sicherheit in Daten- und KI-Projekten

    von Katharine Jarmul

    eBook Download (2024)
    O'Reilly Verlag
    CHF 24,40