Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Mining Very Large Databases with Parallel Processing - Alex A. Freitas, Simon H. Lavington

Mining Very Large Databases with Parallel Processing

Buch | Softcover
208 Seiten
2012
Springer-Verlag New York Inc.
978-1-4613-7523-4 (ISBN)
CHF 239,00 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Mining Very Large Databases with Parallel Processing addresses the problem of large-scale data mining. It is an interdisciplinary text, describing advances in the integration of three computer science areas, namely `intelligent' (machine learning-based) data mining techniques, relational databases and parallel processing. The basic idea is to use concepts and techniques of the latter two areas - particularly parallel processing - to speed up and scale up data mining algorithms.
The book is divided into three parts. The first part presents a comprehensive review of intelligent data mining techniques such as rule induction, instance-based learning, neural networks and genetic algorithms. Likewise, the second part presents a comprehensive review of parallel processing and parallel databases. Each of these parts includes an overview of commercially-available, state-of-the-art tools. The third part deals with the application of parallel processing to data mining. The emphasis is on finding generic, cost-effective solutions for realistic data volumes. Two parallel computational environments are discussed, the first excluding the use of commercial-strength DBMS, and the second using parallel DBMS servers.
It is assumed that the reader has a knowledge roughly equivalent to a first degree (BSc) in accurate sciences, so that (s)he is reasonably familiar with basic concepts of statistics and computer science.
The primary audience for Mining Very Large Databases with Parallel Processing is industry data miners and practitioners in general, who would like to apply intelligent data mining techniques to large amounts of data. The book will also be of interest to academic researchers and postgraduate students, particularly database researchers, interested in advanced, intelligent database applications, and artificial intelligence researchers interested in industrial, real-world applications of machine learning.

The Motivation for Data Mining and Knowledge Discovery.- The Inter-disciplinary Nature of Knowledge Discovery in Databases (KDD).- The Challenge of Efficient Knowledge Discovery in Large Databases and Data Warehouses.- Organization of the Book.- I Knowledge Discovery and Data Mining.- 1 Knowledge Discovery Tasks.- 2 Knowledge Discovery Paradigms.- 3 The Knowledge Discovery Process.- 4 Data Mining.- 5 Data Mining Tools.- II Parallel Database Systems.- 6 Basic Concepts on Parallel Processing.- 7 Data Parallelism, Control Parallelism and Related Issues.- 8 Parallel Database Servers.- III Parallel Data Mining.- 9 Approaches to Speed up Data Mining.- 10 Parallel Data Mining without Dbms Facilities.- 11 Parallel Data Mining with Database Facilities.- 12 Summary and Some Open Problems.- References.

Erscheint lt. Verlag 29.10.2012
Reihe/Serie Advances in Database Systems ; 9
Zusatzinfo XIII, 208 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Sachbuch/Ratgeber Natur / Technik Garten
Informatik Grafik / Design Desktop Publishing / Typographie
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Kryptologie
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-4613-7523-1 / 1461375231
ISBN-13 978-1-4613-7523-4 / 9781461375234
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Bundle: Parts I & II

von Frank Mittelbach; Ulrike Fischer

Buch | Softcover (2023)
Addison Wesley (Verlag)
CHF 167,90
Das umfassende Handbuch

von Christian Denzler

Buch | Hardcover (2023)
Rheinwerk (Verlag)
CHF 62,85