Nicht aus der Schweiz? Besuchen Sie lehmanns.de
First Course in Abstract Algebra, A - John B. Fraleigh

First Course in Abstract Algebra, A

Pearson New International Edition
Buch | Softcover
464 Seiten
2013 | 7th edition
Pearson Education Limited (Verlag)
978-1-292-02496-7 (ISBN)
CHF 109,95 inkl. MwSt
Considered a classic by many, A First Course in Abstract Algebra is an in-depth introduction to abstract algebra. Focused on groups, rings and fields, this text gives students a firm foundation for more specialised work by emphasising an understanding of the nature of algebraic structures.

0. Sets and Relations.
I. GROUPS AND SUBGROUPS.
1. Introduction and Examples.
2. Binary Operations.
3. Isomorphic Binary Structures.
4. Groups.
5. Subgroups.
6. Cyclic Groups.
7. Generators and Cayley Digraphs.
I. PERMUTATIONS, COSETS, AND DIRECT PRODUCTS.
8. Groups of Permutations.
9. Orbits, Cycles, and the Alternating Groups.
10. Cosets and the Theorem of Lagrange.
11. Direct Products and Finitely Generated Abelian Groups.
12. Plane Isometries.
III. HOMOMORPHISMS AND FACTOR GROUPS.
13. Homomorphisms.
14. Factor Groups.
15. Factor-Group Computations and Simple Groups.
16. Group Action on a Set.
17. Applications of G-Sets to Counting.
IV. RINGS AND FIELDS.
18. Rings and Fields.
19. Integral Domains.
20. Fermat's and Euler's Theorems.
21. The Field of Quotients of an Integral Domain.
22. Rings of Polynomials.
23. Factorization of Polynomials over a Field.
24. Noncommutative Examples.
25. Ordered Rings and Fields.
V. IDEALS AND FACTOR RINGS.
26. Homomorphisms and Factor Rings.
27. Prime and Maximal Ideas.
28. Gröbner Bases for Ideals.
VI. EXTENSION FIELDS.
29. Introduction to Extension Fields.
30. Vector Spaces.
31. Algebraic Extensions.
32. Geometric Constructions.
33. Finite Fields.
VII. ADVANCED GROUP THEORY.
34. Isomorphism Theorems.
35. Series of Groups.
36. Sylow Theorems.
37. Applications of the Sylow Theory.
38. Free Abelian Groups.
39. Free Groups.
40. Group Presentations.
VIII.. AUTOMORPHISMS AND GALOIS THEORY.
41. Automorphisms of Fields.
42. The Isomorphism Extension Theorem.
43. Splitting Fields.
44. Separable Extensions.
45. Totally Inseparable Extensions.
46. Galois Theory.
47. Illustrations of Galois Theory.
48. Cyclotomic Extensions.
49. Insolvability of the Quintic.
Appendix: Matrix Algebra.
Notations. 
Index.

Verlagsort Harlow
Sprache englisch
Maße 215 x 276 mm
Gewicht 982 g
Themenwelt Mathematik / Informatik Mathematik Algebra
ISBN-10 1-292-02496-8 / 1292024968
ISBN-13 978-1-292-02496-7 / 9781292024967
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich