Nicht aus der Schweiz? Besuchen Sie lehmanns.de

TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains

(Autor)

Buch | Hardcover
XIV, 165 Seiten
2013 | 2013
Springer International Publishing (Verlag)
978-3-319-01167-7 (ISBN)

Lese- und Medienproben

TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains - Todd Hester
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time.

Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these challenges. In particular, this book is focused on time-constrained domains where the first challenge is critically important. In these domains, the agent's lifetime is not long enough for it to explore the domains thoroughly, and it must learn in very few samples.

Introduction .- Background and Problem Specification.- Real Time Architecture.- The TEXPLORE Algorithm.- Empirical Evaluation.- Further Examination of Exploration.- Related Work.- Discussion and Conclusion.- TEXPLORE Pseudo-Code.

Erscheint lt. Verlag 4.7.2013
Reihe/Serie Studies in Computational Intelligence
Zusatzinfo XIV, 165 p. 55 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 438 g
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Schlagworte Computational Intelligence • Model Based RL • Real-Time Sample Efficient Reinforcement Learning • Reinforcement Learning • Reinforcement Learning for Robots • Temporal Difference Reinforcement Learning for Rob • Temporal Difference Reinforcement Learning for Robots • TEXPLORE
ISBN-10 3-319-01167-7 / 3319011677
ISBN-13 978-3-319-01167-7 / 9783319011677
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen

von Lydia Sloan Cline

Buch | Softcover (2022)
dpunkt (Verlag)
CHF 48,85
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
CHF 27,90
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
CHF 34,90