Data Matching (eBook)
XX, 272 Seiten
Springer Berlin (Verlag)
978-3-642-31164-2 (ISBN)
Data matching (also known as record or data linkage, entity resolution, object identification, or field matching) is the task of identifying, matching and merging records that correspond to the same entities from several databases or even within one database. Based on research in various domains including applied statistics, health informatics, data mining, machine learning, artificial intelligence, database management, and digital libraries, significant advances have been achieved over the last decade in all aspects of the data matching process, especially on how to improve the accuracy of data matching, and its scalability to large databases.
Peter Christen's book is divided into three parts: Part I, 'Overview', introduces the subject by presenting several sample applications and their special challenges, as well as a general overview of a generic data matching process. Part II, 'Steps of the Data Matching Process', then details its main steps like pre-processing, indexing, field and record comparison, classification, and quality evaluation. Lastly, part III, 'Further Topics', deals with specific aspects like privacy, real-time matching, or matching unstructured data. Finally, it briefly describes the main features of many research and open source systems available today.
By providing the reader with a broad range of data matching concepts and techniques and touching on all aspects of the data matching process, this book helps researchers as well as students specializing in data quality or data matching aspects to familiarize themselves with recent research advances and to identify open research challenges in the area of data matching. To this end, each chapter of the book includes a final section that provides pointers to further background and research material. Practitioners will better understand the current state of the art in data matching as well as the internal workings and limitations of current systems. Especially, they will learn that it is often not feasible to simply implement an existing off-the-shelf data matching system without substantial adaption and customization. Such practical considerations are discussed for each of the major steps in the data matching process.Peter Christen is Senior Lecturer at the Research School of Computer Science at the Australian National University in Canberra, Australia. His research interests are data mining, with a focus on data matching, and privacy-preserving data sharing and mining. He has published over 50 papers in these areas, and he is the principle developer of the `Febrl' (Freely Extensible Biomedical Record Linkage) open source data cleaning, deduplication and record linkage system.
Peter Christen is Senior Lecturer at the Research School of Computer Science at the Australian National University in Canberra, Australia. His research interests are data mining, with a focus on data matching, and privacy-preserving data sharing and mining. He has published over 50 papers in these areas, and he is the principle developer of the `Febrl' (Freely Extensible Biomedical Record Linkage) open source data cleaning, deduplication and record linkage system.
Part I Overview.- Introduction.- The Data Matching Process.- Part II Steps of the Data Matching Process.- Data Pre-Processing.- Indexing.- Field and Record Comparison.- Classification.- Evaluation of Matching Quality and Complexity.- Part III Further Topics.- Privacy Aspects of Data Matching.- Further Topics and Research Directions.- Data Matching Systems.
Erscheint lt. Verlag | 4.7.2012 |
---|---|
Reihe/Serie | Data-Centric Systems and Applications | Data-Centric Systems and Applications |
Zusatzinfo | XX, 272 p. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Data Consistency • Data Management • data matching • Data Quality • Duplicate Detection • entity resolution • field matching • Record Linkage |
ISBN-10 | 3-642-31164-4 / 3642311644 |
ISBN-13 | 978-3-642-31164-2 / 9783642311642 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich