Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Stationarity and Convergence in Reduce-or-Retreat Minimization (eBook)

(Autor)

eBook Download: PDF
2012 | 2012
XII, 55 Seiten
Springer New York (Verlag)
978-1-4614-4642-2 (ISBN)

Lese- und Medienproben

Stationarity and Convergence in Reduce-or-Retreat Minimization - Adam B. Levy
Systemvoraussetzungen
50,28 inkl. MwSt
(CHF 49,10)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
​​​​​​ Stationarity and Convergence in Reduce-or-Retreat Minimization presents and analyzes a unifying framework for a wide variety of numerical methods in optimization. The author's 'reduce-or-retreat' framework is a conceptual method-outline that covers any method whose iterations choose between reducing the objective in some way at a trial point, or retreating to a closer set of trial points. The alignment of various derivative-based methods within the same framework encourages the construction of new methods, and inspires new theoretical developments as companions to results from across traditional divides. The text illustrates the former by developing two generalizations of classic derivative-based methods which accommodate non-smooth objectives, and the latter by analyzing these two methods in detail along with a pattern-search method and the famous Nelder-Mead method.In addition to providing a bridge for theory through the 'reduce-or-retreat' framework, this monograph extends and broadens the traditional convergence analyses in several ways. Levy develops a generalized notion of approaching stationarity which applies to non-smooth objectives, and explores the roles of the descent and non-degeneracy conditions in establishing this property. The traditional analysis is broadened by considering 'situational' convergence of different elements computed at each iteration of a reduce-or-retreat method. The 'reduce-or-retreat' framework described in this text covers specialized minimization methods, some general methods for minimization and a direct search method, while providing convergence analysis which complements and expands existing results.​ ​
Stationarity and Convergence in Reduce-or-Retreat Minimizationpresents and analyzes a unifying framework for a wide variety of numerical methods in optimization. The author's "e;reduce-or-retreat"e; framework is a conceptual method-outline that covers any method whose iterations choose betweenreducing the objective in some way at a trial point, or retreating to a closer set of trial points. The alignment of various derivative-based methods within the same framework encourages the construction of new methods, and inspires new theoretical developments as companions to results from across traditional divides. The text illustrates the former by developing two generalizations of classic derivative-based methods which accommodate non-smooth objectives, and the latter by analyzing these two methods in detail along with a pattern-search method and the famous Nelder-Mead method.In addition toproviding a bridge for theory through the "e;reduce-or-retreat"e; framework, this monograph extends and broadens the traditional convergence analyses in several ways. Levy develops a generalized notion of approaching stationarity which applies to non-smooth objectives, and explores the roles of the descent and non-degeneracy conditions in establishing this property. The traditional analysis is broadened by considering "e;situational"e; convergence of different elements computed at each iteration of a reduce-or-retreat method. The "e;reduce-or-retreat"e; framework described in this text covers specialized minimization methods, some general methods for minimization and a direct search method, while providing convergence analysis which complements and expands existing results.

-1. A Framework for Reduce-or-Retreat Minimization. -2. Particular Reduce-or-Retreat Methods. -3. Scenario Analysis.

Erscheint lt. Verlag 10.8.2012
Reihe/Serie SpringerBriefs in Optimization
SpringerBriefs in Optimization
Zusatzinfo XII, 55 p. 3 illus., 1 illus. in color.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte convergence analysis • derivative-free methods • non-smooth analysis • Numerical Methods • reduce or retreat methods in optimization
ISBN-10 1-4614-4642-2 / 1461446422
ISBN-13 978-1-4614-4642-2 / 9781461446422
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 579 KB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich