Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Handbook of Dynamical Systems -

Handbook of Dynamical Systems (eBook)

eBook Download: PDF | EPUB
2010 | 1. Auflage
560 Seiten
Elsevier Science (Verlag)
978-0-08-093226-2 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
195,00 inkl. MwSt
(CHF 189,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
In this volume, the authors present a collection of surveys on various aspects of the theory of bifurcations of differentiable dynamical systems and related topics. By selecting these subjects, they focus on those developments from which research will be active in the coming years. The surveys are intended to educate the reader on the recent literature on the following subjects: transversality and generic properties like the various forms of the so-called Kupka-Smale theorem, the Closing Lemma and generic local bifurcations of functions (so-called catastrophe theory) and generic local bifurcations in 1-parameter families of dynamical systems, and notions of structural stability and moduli. - Covers recent literature on various topics related to the theory of bifurcations of differentiable dynamical systems - Highlights developments that are the foundation for future research in this field - Provides material in the form of surveys, which are important tools for introducing the bifurcations of differentiable dynamical systems
In this volume, the authors present a collection of surveys on various aspects of the theory of bifurcations of differentiable dynamical systems and related topics. By selecting these subjects, they focus on those developments from which research will be active in the coming years. The surveys are intended to educate the reader on the recent literature on the following subjects: transversality and generic properties like the various forms of the so-called Kupka-Smale theorem, the Closing Lemma and generic local bifurcations of functions (so-called catastrophe theory) and generic local bifurcations in 1-parameter families of dynamical systems, and notions of structural stability and moduli. - Covers recent literature on various topics related to the theory of bifurcations of differentiable dynamical systems- Highlights developments that are the foundation for future research in this field- Provides material in the form of surveys, which are important tools for introducing the bifurcations of differentiable dynamical systems

Front cover 1
Half title page 2
Title page 4
Copyright page 5
Dedication page 6
Preface 8
List of Contributors 10
Contents 12
Chapter 1. Preliminaries of Dynamical Systems Theory 14
1. General definition of a dynamical system 16
2. Transversality and generic properties 26
3. Generic properties which are not based on transversality: the Closing Lemma 39
4. Generic local bifurcations 41
5. Structural stability and moduli 51
References 53
Chapter 2. Prevalence 56
1. Introduction 58
2. Linear prevalence 64
3. Nonlinear prevalence 81
4. Other notions of genericity 91
References 94
Chapter 3. Local Invariant Manifolds and Normal Forms 102
1. Introduction 104
2. Construction of invariant manifolds: the graph transform 104
3. Invariant foliations 117
4. Linearizations and partial linearizations 121
5. Normal forms 125
6. Liapunov-Schmidt reduction 133
References 136
Chapter 4. Complex Exponential Dynamics 138
1. Introduction 140
2. Basic notions 140
3. Quadratic dynamics 153
4. Exponential dynamics 168
5. Cantor bouquets 176
6. Indecomposable continua 189
7. The parameter plane 196
8. Untangling hairs 203
9. Back to polynomials 216
10. Other families of maps 221
References 234
Chapter 5. Some Applications of Moser's Twist Theorem 238
1. Background: the action-angle variables, the generating functions 240
2. Basic statements of KAM theory 248
3. A variational approach to Moser's twist theorem 250
4. Applications 253
5. Arnold diffusion 258
References 258
Chapter 6. KAM Theory: Quasi-periodicity in Dynamical Systems 262
1. Introduction 264
2. Complex linearization 267
3. KAM Theory for circle and annulus maps 270
4. KAM Theory for flows 279
5. Further developments in KAM Theory 293
6. Quasi-periodic bifurcations: dissipative setting 301
7. Quasi-periodic bifurcation theory in other settings 309
8. Further Hamiltonian KAM Theory 312
9. Whitney smooth bundles of KAM tori 331
10. Conclusion 337
Acknowledgments 338
References 338
Chapter 7. Reconstruction Theory and Nonlinear Time Series Analysis 358
1. Introduction 360
2. An experimental example: the dripping tap 360
3. The reconstruction theorem 361
4. The reconstruction theorem and nonlinear time series analysis: discrimination between deterministic and random time series 365
5. Stationarity and reconstruction measures 370
6. Correlation dimensions and entropies 373
7. Numerical estimation of correlation integrals and the corresponding dimensions and entropies 376
8. Classical time series analysis, the analysis in terms of correlation integrals, and predictability 379
9. Miscellaneous subjects 385
References 389
Chapter 8. Homoclinic and Heteroclinic Bifurcations in Vector Fields 392
1. Introduction 394
2. Homoclinic and heteroclinic orbits, and their geometry 396
3. Analytical and geometric approaches 406
4. Phenomena 419
5. Catalogue of homoclinic and heteroclinic bifurcations 433
6. Related topics 510
References 522
Author Index 538
Subject Index 552

2.3.2 Generic properties of symplectic, Hamiltonian and volume preserving systems

The main reference for the results which we discuss here is [56]. We treat a number of cases separately.

Symplectic diffeomorphisms

We start with the periodic and fixed points of symplectic maps (time set ). Our starting point is a state space which is a manifold with symplectic form , see Section 1.3.1. For a symplectic diffeomorphism :X→X, the 1-jet extension satisfies some extra properties which reflect the fact that has to respect the symplectic form. This is the reason that we define the 1-jet space differently here: ω1(X) is the space consisting of triples x1,x2,L), with 1,x2∈X, and a linear map from x1 to x2 such that ∗(ωx2)=ωx1, i.e. we require to be a linear symplectic map from the tangent space at 1 to the tangent space at 2. Note that this is consistent with what we defined in Section 1.3.1, i.e. a diffeomorphism is symplectic if and only if for each ∈X, the triple x,φ(x),dφx) is in ω1(X) as defined here. The important fact is that with this definition of the 1-jet space, we have, within the class of symplectic diffeomorphisms, the transversalitiy theorem with respect to submanifolds of these jet spaces.

This does however not lead to the same Kupka-Smale theorem we had before: the reason is that, in the group of linear symplectic maps of a vector space to itself, the set of non-hyperbolic maps has interior points. This is related to the fact that for a symplectic automorphism, the eigenvalues have to satisfy some extra conditions: whenever is an eigenvalue of such an automorphism, then so are , −1, and ―−1. This implies that a pair of non-real eigenvalues , on the unit circle (of multiplicity one) cannot be pushed off the unit circle by a small perturbation. In order to formulate a generic property for fixed points, excluding 1-jets of a certain type (like the non-hyperbolic ones in the non-symplectic case) we need a subset of ℓω(2n), the group of symplectic automorphisms in a vector space of dimension n, which:

1. has no interior points (and is semi-algebraic);

2. is invariant under symplectic conjugations, i.e. independent of the choice of a particular basis;

3. the elements of which cause dynamic complexity.

For this we take the complement of the set of those ∈Gℓω(2n) for which each eigenvalue is either hyperbolic, i.e. in norm different from one, or has norm one, but has only multiplicity one and is not a root of unity (eigenvalues which are a root of unity or have multiplicity greater than one correspond to resonance, and complicated dynamics). Linear symplectic automorphisms which satisfy this last condition are called elementary.1

We say that a fixed point of a symplectic diffeomorphism is elementary if φp is elementary; if is a periodic point of such a diffeomorphism with k(p)=p and i(p)≠p for <i<k, then it is called elementary if φpk is elementary.

Theorem

Kupka-Smale for Symplectic Diffeomorphisms, I

Forrsymplectic diffeomorphisms,>0, it is a generic property that all its fixed points and periodic points are elementary.   

In this situation the stable and unstable manifolds of the fixed and periodic points are defined as in the general case. They have however some additional properties. First, on a n-dimensional symplectic manifold, stable and unstable manifolds always have dimension n. This is a consequence of the above mentioned restriction on the eigenvalues of a symplectic automorphism. Second, stable and unstable manifolds are always isotropic, in the following sense:

A sub-manifold of a symplectic manifold with symplectic form is called isotropic if for each ∈Y and ,w∈Tp(Y), (v,w)=0.

Still in this situation the second part of the Kupka-Smale theorem remains unchanged:

Theorem

Kupka-Smale for Symplectic Diffeomorphisms, II

Forrsymplectic diffeomorphisms,>0, it is a generic property that all stable and unstable manifolds intersect transversally.   

The condition of transversal intersections in the last theorem has to be interpreted correctly: if is a periodic or a fixed point, then one has to disregard itself as an intersection of s(p) and u(p): if is not hyperbolic this is indeed a non-transversal intersection. If the non-hyperbolic eigenvalues of such a periodic or fixed point all have multiplicity 1, then, within the symplectic context, it is persistent as a non-hyperbolic fixed or periodic point, and hence the non-transversal intersection cannot be perturbed away.

Volume preserving diffeomorphisms

In the one-dimensional case volume preserving diffeomorphisms are just translations; this is too trivial a case for further consideration. In dimension two, volume preserving diffeomorphisms are just symplectic diffeomorphisms which we have already discussed. In dimensions greater that two, the generic properties of fixed and periodic points are the same as in the general case. The reason is that the only restriction on the derivative of a volume preserving diffeomorphism at a fixed point is that the product of its eigenvalues (the determinant) equals ±1. In dimension three, in the space of linear volume preserving automorphisms, the set of non-hyperbolic ones has no interior points. So all the considerations from the general case carry over.

Hamiltonian flows: the singularities

Here again the state space is a manifold with symplectic form . For a dynamical system with time set there is a generating vector field , i.e. (p)=∂tΦ(p,0). We recall, see Section 1.3.1, that the requirement that the maps t preserve is equivalent to the requirement that the 1-form Zω=ω(Z,⋅) is closed. In many examples, e.g. when is a vector space, this 1-form is even exact so that there is a function, the Hamiltonian function, :X→R such that H=ω(Z,⋅). From now on we consider only the case where there is such a Hamiltonian function.

We recall an important fact from Hamiltonian dynamics: for each evolution (t) of such a system, the function (x(t)) is constant. This means that such a dynamical system decomposes to a 1-parameter family of dynamical systems with state spaces h=H−1(h). This will be especially of importance in the next section on periodic orbits.

We now formulate the first generic property concerning the singularities of a Hamiltonian function. For this we recall that a singularity of a function is a point where its derivative is zero; it is non-degenerate if its second derivative, as a quadratic form, has maximal rank.

Theorem

Genericity of Critical Points

ForrHamiltonian systems,>0, on a symplectic manifold, it is a generic property that the corresponding Hamiltonian function has only non-degenerate critical points and that in any two different critical points, the values of the Hamiltonian function are different.   

We observe that whenever the Hamiltonian vector field is r, a corresponding Hamiltonian function is r+1. The Hamiltonian function is not unique, but any two possible Hamiltonian functions for the same Hamiltonian vector field locally only differ by a constant. So that the statement on the critical points of the Hamiltonian function makes sense for a 1 Hamiltonian vector field and is independent...

Erscheint lt. Verlag 10.11.2010
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie
Technik
ISBN-10 0-08-093226-6 / 0080932266
ISBN-13 978-0-08-093226-2 / 9780080932262
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 20,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 17,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich