Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Research and Development in Intelligent Systems XXII -

Research and Development in Intelligent Systems XXII (eBook)

Proceedingas of AI-2005, the Twenty-fifth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence

Tony Allen, Frans Coenen (Herausgeber)

eBook Download: PDF
2010 | 2006
XIV, 358 Seiten
Springer London (Verlag)
978-1-84628-226-3 (ISBN)
Systemvoraussetzungen
213,99 inkl. MwSt
(CHF 208,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The papers in this volume are the refereed technical papers presented at AI2005, the Twenty-fiftth SGAI International Conference on theory, practical and application of Artificial Intelligence, held in Cambridge in December 2005.

The papers in this volume present new and innovative developments in the field, divided into sections on Machine Learning, Knowledge Representation and Reasoning, Knowledge Acquisition, Constraint Satisfaction and Scheduling, and Natural Language Processing.

This is the twenty-first volume in the Research and Development series. The series is essential reading for those who wish to keep up to date with developments in this important field.

The Application Stream papers are published as a companion volume under the title Applications and Innovations in Intelligent Systems XIII.


RESEARCH AND DEVELOPMENT IN INTELLIGENT SYSTEMS XXIIThe papers in this volume are the refereed technical papers presented at AI2005, the Twenty-fifth SGAI International Conference on theory, practical and application of Artificial Intelligence, held in Cambridge in December 2005.The papers in this volume present new and innovative developments in the field, divided into sections on Machine Learning, Knowledge Representation and Reasoning, Knowledge Acquisition, Constraint Satisfaction and Scheduling, and Natural Language Processing.This is the twenty-first volume in the Research and Development series. The series is essential reading for those who wish to keep up to date with developments in this important field.The Application Stream papers are published as a companion volume under the title Applications and Innovations in Intelligent Systems XIII.

Technical Keynote Address.- Computational Intelligence for Bioinformatics: The Knowledge Engineering Approach.- Best Technical paper.- Reusing JessTab Rules in Protégé.- Information Learning, Integration and Management.- Robot Docking Based on Omnidirectional Vision and Reinforcement Learning.- Global EM Learning of Finite Mixture Models using the Greedy Elimination Method.- Tracking Drifting Concepts by Time Window Optimisation.- Hierarchical knowledge-oriented specification for information integration.- Al and the World Wide Web.- The Semantic Web as a Linguistic Resource: Opportunities for Natural Language Generation.- A Distributed CBR Framework through Semantic Web Services.- Using simple ontologies to build personal Webs of knowledge.- Modeling Navigation Patterns of Visitors of Unstructured Websites.- Networks and Biologically Motivated Al.- Exploring the Noisy Threshold Function in Designing Bayesian Networks.- A biologically motivated neural network architecture for the avoidance of catastrophic interference.- Fast Estimation of Distribution Algorithm (EDA) via Constrained Multi-Parent Recombination.- Multi-Agent Systems.- A Trading Agent for a Multi-Issue Clearing House.- An Agent-Based Approach to ANN Training.- Case-Based Reasoning.- Collaborative Recommending using Formal Concept Analysis.- Using Case Differences for Regression in CBR Systems.- Formal Concept Analysis for Knowledge Refinement in Case Based Reasoning.- Recommendation Knowledge Discovery.- Knowledge Discovery in Data.- Improved Methods for Extracting Frequent Itemsets from Interim-Support Trees.- The Impact of Rule Ranking on the Quality of Associative Classifiers.- Reliable Instance Classification with Version Spaces.- Reasoning and Decision Making.- Acting Irrationally to Improve Performance in Stochastic Worlds.- On the Use of OBDDs in Model Based Diagnosis: an Approach Based on the Partition of the Model.- Issues in Designing Tutors for Games of Incomplete Information: a Bridge Case Study.- Qualitative Representation and Reasoning with Uncertainty in Space and Time.

"SESSION 2: NETWORKS AND BIOLOGICALLV MOTIVATED AI (S. 132-133)

Exploring the Noisy Threshold Function in Designing Bayesian Networks*

Rasa Jurgelenaite, Peter Lucas and Tom Heskes Radboud University Nijmegen, Nijmegen, The Netherlands E-mail : {rasa.peterl.tomh}@cs.ru.nl

Abstract

Causal independence modelling is a well-known method both for reducing the size of probability tables and for explaining the underlying mechanisms in Bayesian networks. Many Bayesian network models incorporate causal independence assumptions; however, only the noisy OR and noisy AND, two examples of causal independence models, are used in practice. Their underlying assumption that either at least one cause, or all causes together, give rise to an effect, however, seems unnecessarily restrictive. In the present paper a new, more flexible, causal independence model is proposed, based on the Boolean threshold function. A connection is established between conditional probability distributions based on the noisy threshold model and Poisson binomial distributions, and the basic properties of this probability distribution are studied in some depth. The successful application of the noisy threshold model in the refinement of a Bayesian network for the diagnosis and treatment of ventilator-associated pneumonia demonstrates the practical value of the presented theory.

1 Introduction

Bayesian networks offer an appealing language for building models of domains with inherent uncertainty. However, the assessment of a probability distribution in Bayesian networks is a challenging task, even if its topology is sparse. This task becomes even more complex if the model has to integrate expert knowledge. While learning algorithms can be forced to take into account an experts view, for the best possible results the experts must be willing to reconsider their ideas in light of the models discovered structure.

This requires a clear understanding of the model by the domain expert. Causal independence models can both limit the number of conditional probabilities to be assessed and provide the ability for models to be understood by domain experts in the field. The concept of causal independence refers to a situation where multiple causes independently influence a common effect. Many actual Bayesian network models use causal independence assumptions . However, only the logical OR and AND operators are used in practice in defining the interaction among causes; their underlying assumption is that the presence of either at least one cause or all causes at the same time give"

Erscheint lt. Verlag 12.5.2010
Zusatzinfo XIV, 358 p.
Verlagsort London
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Wirtschaft Betriebswirtschaft / Management Wirtschaftsinformatik
Schlagworte algorithms • Artificial Intelligence • Bayesian Network • Bioinformatics • Constraint Satisfaction • Intelligence • Knowledge • Knowledge Discovery • Knowledge Engineering • learning • Modeling • natural language • Optimization • robot • semantic web
ISBN-10 1-84628-226-8 / 1846282268
ISBN-13 978-1-84628-226-3 / 9781846282263
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 36,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 16,95