Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Embedded Computer Vision (eBook)

eBook Download: PDF
2008 | 2009
XXVIII, 284 Seiten
Springer London (Verlag)
978-1-84800-304-0 (ISBN)

Lese- und Medienproben

Embedded Computer Vision -
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
As a graduate student at Ohio State in the mid-1970s, I inherited a unique c- puter vision laboratory from the doctoral research of previous students. They had designed and built an early frame-grabber to deliver digitized color video from a (very large) electronic video camera on a tripod to a mini-computer (sic) with a (huge!) disk drive-about the size of four washing machines. They had also - signed a binary image array processor and programming language, complete with a user's guide, to facilitate designing software for this one-of-a-kindprocessor. The overall system enabled programmable real-time image processing at video rate for many operations. I had the whole lab to myself. I designed software that detected an object in the eldofview,trackeditsmovementsinrealtime,anddisplayedarunningdescription of the events in English. For example: 'An object has appeared in the upper right corner...Itismovingdownandtotheleft...Nowtheobjectisgettingcloser...The object moved out of sight to the left'-about like that. The algorithms were simple, relying on a suf cient image intensity difference to separate the object from the background (a plain wall). From computer vision papers I had read, I knew that vision in general imaging conditions is much more sophisticated. But it worked, it was great fun, and I was hooked.
As a graduate student at Ohio State in the mid-1970s, I inherited a unique c- puter vision laboratory from the doctoral research of previous students. They had designed and built an early frame-grabber to deliver digitized color video from a (very large) electronic video camera on a tripod to a mini-computer (sic) with a (huge!) disk drive-about the size of four washing machines. They had also - signed a binary image array processor and programming language, complete with a user's guide, to facilitate designing software for this one-of-a-kindprocessor. The overall system enabled programmable real-time image processing at video rate for many operations. I had the whole lab to myself. I designed software that detected an object in the eldofview,trackeditsmovementsinrealtime,anddisplayedarunningdescription of the events in English. For example: "e;An object has appeared in the upper right corner...Itismovingdownandtotheleft...Nowtheobjectisgettingcloser...The object moved out of sight to the left"e;-about like that. The algorithms were simple, relying on a suf cient image intensity difference to separate the object from the background (a plain wall). From computer vision papers I had read, I knew that vision in general imaging conditions is much more sophisticated. But it worked, it was great fun, and I was hooked.

Foreword 6
Preface 8
Embedded Computer Vision 8
Target Audience 9
Organization of the Book 10
Overview of Chapters 10
How This Book Came About 12
Outlook 13
Acknowledgements 14
Contents 15
List of Contributors 22
Introduction 26
Hardware Considerations for Embedded Vision Systems 27
1.1 The Real-Time Computer Vision Pipeline 27
1.2 Sensors 29
1.3 Interconnects to Sensors 33
1.4 Image Operations 35
1.5 Hardware Components 36
1.6 Processing Board Organization 46
1.7 Conclusions 48
References 49
Design Methodology for Embedded Computer Vision Systems 51
2.1 Introduction 51
2.2 Algorithms 54
2.3 Architectures 55
2.4 Interfaces 57
2.5 Design Methodology 59
2.6 Conclusions 67
References 67
We Can Watch It for You Wholesale 72
3.1 Introduction to Embedded Video Analytics 72
3.2 Video Analytics Goes Down-Market 74
3.3 How Does Video AnalyticsWork? 79
3.4 An Embedded Video Analytics System: by the Numbers 89
3.5 Future Directions for Embedded Video Analytics 93
3.6 Conclusion 97
References 98
Advances in Embedded Computer Vision 100
Using Robust Local Features on DSP-Based Embedded Systems 101
4.1 Introduction 101
4.2 RelatedWork 103
4.3 Algorithm Selection 104
4.4 Experiments 109
4.5 Conclusion 119
References 121
Benchmarks of Low-Level Vision Algorithms for DSP, FPGA, and Mobile PC Processors 123
5.1 Introduction 123
5.2 RelatedWork 125
5.3 Benchmark Metrics 125
5.4 Implementation 126
5.5 Results 139
5.6 Conclusions 140
References 141
SAD-Based Stereo Matching Using FPGAs 143
6.1 Introduction 143
6.2 RelatedWork 144
6.3 Stereo Vision Algorithm 145
6.4 Hardware Implementation 147
6.5 Experimental Evaluation 151
6.6 Conclusions 159
References 159
Motion History Histograms for Human Action Recognition 161
7.1 Introduction 161
7.2 RelatedWork 163
7.3 SVM-Based Human Action Recognition System 164
7.4 Motion Features 165
7.5 Dimension Reduction and Feature Combination 170
7.6 System Evaluation 172
7.7 FPGA Implementation on Videoware 178
7.8 Conclusions 182
References 183
Embedded Real-Time Surveillance Using Multimodal Mean Background Modeling 185
8.1 Introduction 185
8.2 RelatedWork 186
8.3 Multimodal Mean Background Technique 188
8.4 Experiment 190
8.5 Results and Evaluation 192
8.6 Conclusion 196
References 197
Implementation Considerations for Automotive Vision Systems on a Fixed- Point DSP 198
9.1 Introduction 198
9.2 Fixed-Point Arithmetic 203
9.3 Process of Dynamic Range Estimation 203
9.4 Implementation Considerations for Single-Camera Steering Assistance Systems on a Fixed- Point DSP 207
9.5 Results 211
9.6 Conclusions 214
References 215
Towards OpenVL: Improving Real-Time Performance of Computer Vision Applications 216
10.1 Introduction 216
10.2 RelatedWork 218
10.3 A Novel Software Architecture for OpenVL 222
10.4 Example Application Designs 232
10.5 Conclusion and Future Work 235
10.6 Acknowledgements 236
References 236
Looking Ahead 238
Mobile Challenges for Embedded Computer Vision 239
11.1 Introduction 239
11.2 In Search of the Killer Applications 241
11.3 Technology Constraints 244
11.4 Intangible Obstacles 250
11.5 Future Direction 252
References 253
Challenges in Video Analytics 256
12.1 Introduction 256
12.2 Current Technology and Applications 257
12.3 Building Blocks 263
12.4 Embedded Implementations 267
12.5 Future Applications and Challenges 269
12.6 Summary 273
References 274
Challenges of Embedded Computer Vision in Automotive Safety Systems 276
13.1 Computer Vision in Automotive Safety Applications 276
13.2 Literature Review 277
13.3 Vehicle Cueing 278
13.4 Feature Extraction 287
13.5 Feature Selection and Classification 293
13.6 Experiments 295
13.7 Conclusion 297
References 297
Index 299

Erscheint lt. Verlag 26.9.2008
Reihe/Serie Advances in Computer Vision and Pattern Recognition
Advances in Computer Vision and Pattern Recognition
Zusatzinfo XXVIII, 284 p.
Verlagsort London
Sprache englisch
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Action Recognition • Automotive safety • computer vision • Driver Assistance • Embedded Computer Vision • Embedded Systems • human action recognition • pattern recognition • Video Analytics • video surveillance
ISBN-10 1-84800-304-8 / 1848003048
ISBN-13 978-1-84800-304-0 / 9781848003040
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 22,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Discover the smart way to polish your digital imagery skills by …

von Gary Bradley

eBook Download (2024)
Packt Publishing (Verlag)
CHF 29,30
Explore powerful modeling and character creation techniques used for …

von Lukas Kutschera

eBook Download (2024)
Packt Publishing (Verlag)
CHF 42,20
Generate creative images from text prompts and seamlessly integrate …

von Margarida Barreto

eBook Download (2024)
Packt Publishing (Verlag)
CHF 31,65