Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications
Seiten
2010
Springer (Verlag)
978-90-481-6150-8 (ISBN)
Springer (Verlag)
978-90-481-6150-8 (ISBN)
Preface Constructing nonlinear parameter-dependent mathematical models is essential in modeling in many scientific research fields. The investigation of branching (bifurcating) solutions of such equations is one of the most important aspects in the analysis of such models. The foundations of the theory of bifurca- tions for the functional equations were laid in the well known publications by AM. Lyapunov (1906) [1, vol. 4] (on equilibrium forms of rotating liq- uids) and E. Schmidt (1908) [1]. The approach proposed by them has been throughly developed and is presently known as the Lyapunov-Schmidt method (see M.M. Vainberg and V.A Trenogin [1, 2]). A valuable part in the founda- tions of the bifurcation theory belongs to A. Poincares ideas [1]. Later, to the end of proving the theorems on existence of bifurcation points, infinite-dimensional generalizations of topological and variational methods were proposed by M.A Krasnoselsky [1], M.M. Vainberg [1] and others. A great contribution to the development and applications of the bifurcation theory has been made by a number of famous 20th century pure and applied mathe- maticians (for example, see the bibliography in E. Zeidler [1]).
1. On Regularization of Linear Equations on the Basis of Perturbation Theory.- 2. Investigation of Bifurcation Points of a Nonlinear Equations.- 3. Regularization of Computation of Solutions in a Neighborhood of the Branch Point.- 4. Iterations, Interlaced Equations and Lyapunov Convex Majorants in Nonlinear Analysis.- 5. Methods of Representation Theory and Group Analysis in Bifurcation Theory.- 6. Singular Dih’ferential Equations in Banach Spaces.- 7. Steady-State Solutions of the Vlasov—Maxwell System.- Appendices.- A— Positive solutions of the nonlinear singular boundary value problem of magnetic insulation.- References.
Erscheint lt. Verlag | 8.12.2010 |
---|---|
Reihe/Serie | Mathematics and Its Applications ; 550 |
Zusatzinfo | XX, 548 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
ISBN-10 | 90-481-6150-9 / 9048161509 |
ISBN-13 | 978-90-481-6150-8 / 9789048161508 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
Lehmanns Media (Verlag)
CHF 55,95
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media
Buch | Softcover (2021)
Springer (Verlag)
CHF 41,95
Interlingua zur Gewährleistung semantischer Interoperabilität in der …
Buch | Softcover (2023)
Springer Fachmedien (Verlag)
CHF 46,15