Simulating Neural Networks with Mathematica
Seiten
2020
Addison-Wesley Educational Publishers Inc (Verlag)
978-0-201-56629-1 (ISBN)
Addison-Wesley Educational Publishers Inc (Verlag)
978-0-201-56629-1 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
This book introduces neural networks, their operation, and application, in the context of the interactive Mathematica environment. Readers will learn how to simulate neural network operations using Mathematica, and will learn techniques for employing Mathematica to assess neural network behavior and performance. For students of neural networks in upper-level undergraduate or beginning graduate courses in computer science, engineering, and related areas. Also for researchers and practitioners interested in using Mathematica as a research tool. Features *Teaches the reader about what neural networks are, and how to manipulate them within the Mathematica environment. *Shows how Mathematica can be used to implement and experiment with neural network architectures. *Addresses a major topic related to neural networks in each chapter, or a specific type of neural network architecture. *Contains exercises, suggested projects, and supplementary reading lists with each chapter. *Includes Mathematica application programs ("packages") in Appendix. (Also available electronically from MathSource.)
Table of ContentsIntroduction to Neural Networks and Mathematica Training by Error Minimization Backpropagation and Its Variants Probability and Neural Networks Optimization and Constraint Satisfaction with Neural Networks Feedback and Recurrent Networks Adaptive Resonance Theory Genetic Algorithms 020156629XB04062001
Table of ContentsIntroduction to Neural Networks and Mathematica Training by Error Minimization Backpropagation and Its Variants Probability and Neural Networks Optimization and Constraint Satisfaction with Neural Networks Feedback and Recurrent Networks Adaptive Resonance Theory Genetic Algorithms 020156629XB04062001
Introduction to Neural Networks and Mathematica.
Training by Error Minimization.
Backpropagation and Its Variants.
Probability and Neural Networks.
Optimization and Constraint Satisfaction with Neural Networks.
Feedback and Recurrent Networks.
Adaptive Resonance Theory.
Genetic Algorithms. 020156629XT04062001
Erscheint lt. Verlag | 1.7.2020 |
---|---|
Verlagsort | New Jersey |
Sprache | englisch |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Informatik ► Office Programme ► Outlook | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
ISBN-10 | 0-201-56629-X / 020156629X |
ISBN-13 | 978-0-201-56629-1 / 9780201566291 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Modelle für 3D-Druck und CNC entwerfen
Buch | Softcover (2022)
dpunkt (Verlag)
CHF 48,85
alles zum Drucken, Scannen, Modellieren
Buch | Softcover (2024)
Markt + Technik Verlag
CHF 34,90