Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Pseudo-reductive Groups - Brian Conrad, Ofer Gabber, Gopal Prasad

Pseudo-reductive Groups

Buch | Hardcover
554 Seiten
2010
Cambridge University Press (Verlag)
978-0-521-19560-7 (ISBN)
CHF 139,60 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
The theory of pseudo-reductive groups is required for the study of general linear algebraic groups over non-perfect fields. This treatment includes new results and a complete classification. The authors describe some of the important applications of the theory and provide a complete exposition of Tits' structure theory of unipotent groups.
Pseudo-reductive groups arise naturally in the study of general smooth linear algebraic groups over non-perfect fields and have many important applications. This self-contained monograph provides a comprehensive treatment of the theory of pseudo-reductive groups and gives their classification in a usable form. The authors present numerous new results and also give a complete exposition of Tits' structure theory of unipotent groups. They prove the conjugacy results (conjugacy of maximal split tori, minimal pseudo-parabolic subgroups, maximal split unipotent subgroups) announced by Armand Borel and Jacques Tits, and also give the Bruhat decomposition, of general smooth connected algebraic groups. Researchers and graduate students working in any related area, such as algebraic geometry, algebraic group theory, or number theory, will value this book as it develops tools likely to be used in tackling other problems.

Brian Conrad is a Professor in the Department of Mathematics at Stanford University. Ofer Gabber is Professor of Mathematics at the Institut des Hautes Études Scientifiques (IHÉS), France. Gopal Prasad is Raoul Bott Professor of Mathematics at the University of Michigan.

Introduction; Terminology, conventions, and notation; Part I. Constructions, Examples, and Structure Theory: 1. Overview of pseudo-reductivity; 2. Root groups and root systems; 3. Basic structure theory; Part II. Standard Presentations and Their Applications: 4. Variation of (G', k'/k, T', C); 5. Universality of the standard construction; 6. Classification results; Part III. General Classification and Applications: 7. General classification and applications; 8. Preparations for classification in characteristics 2 and 3; 9. The absolutely pseudo-simple case in characteristic 2; 10. General case; 11. Applications; Part IV. Appendices: A. Background in linear algebraic groups; B. Tits' work on unipotent groups in nonzero characteristic; C. Rational conjugacy in connected groups; References; Index.

Erscheint lt. Verlag 29.7.2010
Reihe/Serie New Mathematical Monographs
Verlagsort Cambridge
Sprache englisch
Maße 162 x 234 mm
Gewicht 930 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
ISBN-10 0-521-19560-8 / 0521195608
ISBN-13 978-0-521-19560-7 / 9780521195607
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich